Alteration of Terrain Application & Stormwater Drainage Analysis

Jennesstown Manor

Map 7, Lots 39 Route 103 Warner, New Hampshire

February 20, 2025 REVISED: NOVEMBER 18, 2025

KNA Project No. 24-0307-1

Prepared For: Peacock Hill Road, LLC

145 Old Town Road Weare, NH 03281

Prepared By: Keach-Nordstrom Associates, Ind

10 Commerce Park North, Suite 3

THE ST ST

Bedford, New Hampshire 03110

(603) 627-2881 (603) 627-2915 (fax)

Table of Contents

- 1. SIGNED APPLICANT AFFIDAVIT
- 2. AOT APPLICATION
- 3. AOT APPLICATION CHECKLIST
- 4. COPY OF AOT APPLICATION CHECK
- 5. MUNICIPAL SUBMISSION: WARNER
- 6. USGS LOCATION MAP
- 7. PROJECT NARRATIVE
- 8. SURFACE WATER IMPAIRMENTS
- 9. WEB GIS FIGURES
- 10. WARNER GROUNDWATER PROTECTION OVERLAY DISTRICT
- 11. NEW HAMPSHIRE NATURAL HERITAGE INVENTORY DATABASE CHECK
- 12. WEB SOIL SURVEY
- 13. AERIAL PHOTOGRAPH
- 14. SITE PHOTOGRAPHS
- 15. GRV CALCULATION
- 16. BMP WORKSHEETS
- 17. EXTREME PRECIPITATION TABLES
- 18. HYDROCAD DRAINAGE ANALYSIS
- 19. RIP RAP APRON CALCULATIONS
- 20. SWALE RIPRAP CALCULATIONS
- 21. SITE SPECIFIC SOIL SURVEY REPORT
- 22. INFILTRATION FEASIBILITY REPORT
- 23. OPERATION and MAINTENANCE PLAN with CHECKLIST
- 24. PLANS

PRE-DEVELOPMENT DRAIN AREAS PLAN (11"x17" - COLORLESS)

POST-DEVELOPMENT DRAIN AREAS PLAN (11"x17" - COLORLESS)

PRE-DEVELOPMENT SOILS MAP (11"x17" - COLOR)

POST-DEVELOPMENT SOILS MAP (11"x17" - COLOR)

PRE-DEVELOPMENT DRAIN AREAS PLAN (22"x34" - COLORLESS)

POST-DEVELOPMENT DRAIN AREAS PLAN (22"x34" - COLORLESS)

NON-RESIDENTIAL SITE PLAN SET (22" x 34" - COLORLESS)

1.	SIGNED APPLICANT AFFADA	VIT
----	-------------------------	-----

Owner Affidavit

I, Gary Fitzgerald, Member of Peacock Hill Road, LLC and owner of the property referenced on Tax Map 7 as Lot 39, located on Route 103 Warner, New Hampshire, hereby verify that I have authorized Keach-Nordstrom Associates, Inc. to submit on my behalf, any and all applicable State and local permit applications as they pertain to improvements on said property.

Additionally, I authorize Keach-Nordstrom Associates, Inc. to aid in the representation of these applications throughout the approval process.

Printed Name of Owner:

Gary Fitzgerald, Member

Address of Owner:

145 Old Town Road

Weare, NH 03281

Date:

12)10/24

2. AOT APPLICATION

ALTERATION OF TERRAIN PERMIT APPLICATION

Water Division / Land Resources Management

Check the status of your application

RSA / Rule: RSA 485-A:17, Env-Wq 1500

	Administrative Administrative Administrative Use Use Use Only Only		File	File Number:	
			ive Che	Check No.	
			Amo	ount:	
			Initi	als:	
1. APPLICANT INFORMATION (INTENDED PERMIT HOLD	ER)			
Applicant Name: Peacock Hill R	oad, LLC	Contact Name: Ga	ary Fitzgerald	The result for the out to extend the fell of the fell	
Email: hotrodda57@hotmail.com		Daytime Telephor	ne: 603-325-3112	2	
Mailing Address: 145 Old Town	Road	•			
Town/City: Weare			State: NH	ZIP Code: 03281	
2. APPLICANT'S AGENT INFOR	MATION If none, check he	ere:			
Agent's Name:		Contact Name:			
Email:		Daytime Telephor	ne:		
Address:					
Town/City:			State:	ZIP Code:	
3. PROPERTY OWNER INFORM attach additional sheets as nec		M APPLICANT) Check h	ere if more tha	n one property owner, and	
Owner's Name:		Contact Name:			
Email:		Daytime Telephor	ne:		
Mailing Address:					
Town/City:			State:	ZIP Code:	
4. PROPERTY OWNER'S AGENT	INFORMATION If none,	check here:			
Business Name:		Contact Name:			
Email:	mail: Daytime Telephone:				
Address:					
Town/City:			State:	ZIP Code:	
5. CONSULTANT INFORMATION	N If none, check he	ere:			
Engineering Firm: Keach-Nordst	ach-Nordstrom Associates, Inc. Contact Name: Jason Lopez				
Email: jlopez@keachnordstrom.c	ail: jlopez@keachnordstrom.com Daytime Telephone: 603-627-2881				
Address: 10 Commerce Park N S	uite 3B				
Town/City: Bedford			State: NH	ZIP Code: 03110	

6. PROJECT TYPE					
Excavation Only	Residential	Commercial	Golf Course	School	Municipal
Agricultural	Land Conversion	Other:			
7. PROJECT LOCATION IN	FORMATION				
Project Name: Jennesstown	Manor				
Street/Road Address: Rout	e 103				
Town/City: Warner		Cou	nty: Merrimack		
Tax Map: 7	Block:		Lot Number: 39 & 3	9-1 Unit	::
Post-development, will th the purpose.	e proposed project wit	thdraw from or dire	ectly discharge to a	ny of the followin	ng? If yes, identify
1. Stream or Wetland			Yes	Withdrawal	Discharge
Purpose:			■ No	W	
2. Artificial pond created	I by impounding a strea	am or wetland	Yes [Withdrawal	Discharge
Purpose:			■ No		
3. Unlined pond dug into	the water table		Yes [Withdrawal	Discharge
Purpose: Pocket Pond			■ No		
 Within one-quarter mile of a surface water impaired for phosphorus and/or nitrogen? No Yes Within one-quarter mile of a Class A surface water or within the watershed area of an Outstanding Resource Water? No Yes Within one-quarter mile of a lake or pond not covered previously? No Yes Is the project a High Load area? No If yes, specify the type of high load land use or activity: Is the project within a Water Supply Intake Protection Area (WSIPA)? Yes No Is the project within a Groundwater Protection Area (GPA)? Yes No Will the well setbacks identified in Env-Wq 1508.02 be met? Yes No For more details on the restrictions in these areas, read Chapter 3.1 in Volume 2 of the NH Stormwater Manual. Is any part of the property within the 100-year floodplain? Yes No If yes: Cut volume: cubic feet within the 100-year floodplain. Fill volume: cubic feet within the 100-year floodplain. 					
Project is within ¼ mile of a designated river Name of River: Warner River Project is not within ¼ mile of a designated river.					
Project is not within a Coastal/Great Bay Region community. Project is not within a Coastal/Great Bay Region community.					
8. BRIEF PROJECT DESCRIPTION (PLEASE DO NOT REPLY "SEE ATTACHED")					
Two four unit buildings each with shared driveway and a parking area to take place on Map 7 Lots 39 & 39-1.					

9. IF APPLICABLE, DESCRIBE ANY WORK STARTED PRIOR TO RECEIVING PERMIT.				
Tree clearing per intent to cut filed with Town.				
10. ADDITIONAL REQUIRED INFORMATION	٧			
requires proof that a completed applica	Date a copy of the application was sent to the municipality, as required by Env-Wq 1503.05(e) (Env-Wq 1503.05(c)(6), requires proof that a completed application form, checklist, plans and specifications, and all other supporting materials have been sent or delivered to the governing body of each municipality in which the project is proposed): (Attach proof of delivery)			
1503.05(c)(6), requires proof that a com supporting materials have been sent or of a designated river): N/A	B. Date a copy of the application was sent to the local river advisory committee, if required by Env-Wq 1503.05(e) (Env-Wq 1503.05(c)(6), requires proof that a completed application form, checklist, plans and specifications, and all other supporting materials have been sent or delivered to the Local River Advisory Committee, if the project is within ¼ mile			
(Attach proof of delivery)				
C. Type of plan required: Land Convers Steep Slope	ion 🔳 Detailed Developme	ent Excava	tion, Grading and Reclamation	
D. Additional plans required: Chloride	ter Drainage and Hydrologic Management	Soil Groups	Source Control	
E. Total area of disturbance, in square feet	t 275,000			
F. Additional impervious cover as a result of the project, in square feet (use "-"to indicate a net reduction in impervious coverage). Total final impervious cover, in square feet Total Cover: 37,244 SF Additional Cover: 25,352 SF				
G. Total undisturbed cover, in square feet	1,317,247			
H. Number of lots proposed: 2				
I. Total length of roadway, in linear feet: C)			
J. Name(s) of receiving water(s): Warner I	River			
K. Identify all other NHDES permits required for the project. For each, indicate whether an application has been filed and is pending. If the required approval has been issued, provide the permit number, registration date, or approval letter number, as applicable.				
Type of Approval	Application Filed?	Pending?	If Issued	
1. Water Supply Approval	Yes No No N/A		Permit number:	
2. Wetlands Permit	Yes No No		Permit number:	
3. Shoreland Permit	Yes No No		Registration date:	
4. UIC Registration	Yes No No N/A		Approval letter date:	
5. Large/Small Community Well Approval	Yes No No N/A		Permit number:	
6. Large Groundwater Withdrawal Permit	Yes No No N/A		Permit number:	
7. Other: Yes No				
L. List all species identified by the Natural	Heritage Bureau as threater	ned or endan	gered or of concern:	
Wood Turtle				

NHDES-W-01-003

M. Using the NHDES OneStop Data Mapper with the Surface Water Impairment layer turned on, list the impairments identified for each receiving water. If no pollutants are listed, enter "N/A."					
N/A					
N. Did the applicant or applicant's agent have a pre-application meeting with Alteration of Terrain Bureau staff?					
Yes No If yes, name of staff memb	er:				
O. Will blasting of bedrock be required? Yes No If yes, estimated quantity of blast ro	ock in cubic yards:				
If yes, standard blasting Best Management Practices notes must be placed on the plans.					
NOTE: If greater than 5,000 cubic yards of blast rock will be generated, a groundwater monitoring program must be developed and submitted to NHDES. Contact Alteration of Terrain Bureau staff for additional detail.					

11. CHECK ALL APPLICATION ATTACHMENTS THAT APPLY (SUBMIT WITH APPLICATION IN THE ORDER LISTED BELOW)
LOOSE:
 Signed application form, with attached proof(s) of delivery. Check for the application fee, calculated using the <u>fee schedule</u> available on the NHDES <u>Land Development page</u>. Color copy of a USGS map with the property boundaries outlined (1" = 2,000' scale). If the applicant is not the property owner, proof that the applicant will have a legal right to undertake the project on the property if a permit is issued to the applicant.
BOUND, IN A REPORT, IN THE FOLLOWING ORDER:
Copy of the signed application form and application checklist.
Copy of the check.
Copy of the USGS map with the property boundaries outlined (1" = 2,000' scale).
Narrative of the project with a summary table of the peak discharge rate for the off-site discharge points.
Printout of NHDES OneStop Mapper with "Surface Water Impairments" layer turned on.
Printout of NHDES OneStop Mapper with Alteration of Terrain screening layers turned on.
Printout of Natural Heritage Bureau <u>DataCheck Tool</u> letter and any relevant correspondence with New Hampshire
Fish and Game.
USDA Web Soil Survey Map with project's watershed outlined.
Aerial photograph (1" = 2,000' scale with the site boundaries outlined).
Photographs representative of the site.
Groundwater recharge volume calculations (include one Best Management Practices worksheet per permit
application).
Drainage analysis, stamped by a professional engineer (see "Application Checklist" at the end of this document).
Riprap apron or other energy dissipation or stability calculations.
Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey
was done in accordance with the <u>Site Specific Soil Mapping standards</u> of the Society of Soil Scientists of Northern
New England.
Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)].
Registration and Notification Form for Stormwater Infiltration to Groundwater (UIC Registration-for underground
systems only, including drywells and trenches).
Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)].
Source control plan.
PLANS:
One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details).
Pre- and post-development color-coded soil plans on 11" x 17" (see Application Checklist for details).
Pre- and post-construction drainage area plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for
details).
·
.00-YEAR FLOODPLAIN REPORT:
All information required in Env-Wq 1503.09, submitted as a separate report.
ADDITIONAL INFORMATION RE: NUTRIENTS, CLIMATE
See Application Checklist (Attachment A) for details.
REVIEW APPLICATION FOR COMPLETENESS. CONFIRM INFORMATION LISTED ON THE APPLICATION IS INCLUDED WITH SUBMITTAL.

NHDES-W-01-003

12. REQUIRED SIGNATURES	
By signing below, I certify that:	
 The information contained in or otherwis best of my knowledge and belief; 	e submitted with this application is true, complete, and not misleading to the
department to deny the application, revo matter to the board of professional engin	incomplete, or misleading information constitutes grounds for the ske any permit that is granted based on the information, and/or refer the seers established by RSA 310-A:3 if I am a professional engineer; and alties specified in New Hampshire law for falsification in official matters,
currently RSA 641:3.	
⊠ APPLICANT	APPLICANT'S AGENT:
Signature:	Date: 3 13 25
Name (print or type): GARY Fitzgerealch,	Title: pangior
□ PROPERTY OWNER	PROPERTY OWNER'S AGENT:
Signature:	Date: 3 13 25
Name (print or type): GARY For	Sayerrole\ Title:

3. AOT APPLICATION CHECKLIST

ALTERATION OF TERRAIN PERMIT ATTACHMENT A: APPLICATION CHECKLIST

Check each box to indicate the item has been provided, or indicate why it does not apply.

DE	SIGN PLANS
8	Plans printed on 34 - 36" by 22 - 24" white paper.
7	Professional Engineer stamp.
	Wetland delineation.
	Temporary erosion control measures.
	Treatment for all stormwater runoff from impervious surfaces such as roadways (including gravel roadways), parking areas, and nonresidential roof runoff. Guidance on treatment BMPs can be found in Volume 2, Chapter 4 of the New Hampshire Stormwater Management Manual.
	Pre-existing 2-foot contours.
2	Proposed 2-foot contours.
6	Drainage easements protecting the drainage/treatment structures.
	Compliance with state statute governing fill and dredge in <u>wetlands</u> , RSA 482- A. Note that artificial detention in wetlands is prohibited.
	Compliance with the New Hampshire Shoreland Protection Act, RSA 483-B. Site not in Shoreland Zone.
	Benching – needed if you have more than 20 feet change in elevation on a 2:1 slope, 30 feet change in elevation on a 3:1 slope, 40 feet change in elevation on a 4:1 slope.
	Check to see if any proposed ponds require state dam permits. No state dam permits required.
DE	TAILS
	Typical roadway cross-section.
	Detention basin with inverts noted on the outlet structure.
36	Stone berm level spreader.
	Outlet protection – riprap aprons.
	A general installation detail for an erosion control blanket.
	Silt fences or mulch berm.
	Storm drain inlet protection. Note that since hay bales must be embedded 4 inches into the ground, they are not to be used on hard surfaces such as pavement.
	Hay bale barriers. No hale bale barriers proposed.
	Stone check dams. No stone check dams proposed.
	Gravel construction exit.
4	Temporary sediment trap.
	The treatment BMPs proposed.
	Any innovative BMPs proposed. No innovative BMPs proposed.

CONSTRUCTION SEQUENCE / EROSION CONTROL

- Note that the project must be managed to meet the requirements and intent of RSA 430:53 and Agr 3800 relative to invasive species.
- Note that perimeter controls shall be installed prior to earth moving operations.
- Note that temporary water diversion (swales, basins, etc.) must be used as necessary until areas are stabilized.
- Note that ponds and swales shall be installed early on in the construction sequence (before rough grading the site).
- Note that all ditches and swales shall be stabilized prior to directing runoff to them.
- Note that all roadways and parking lots shall be stabilized within 72 hours of achieving finished grade.
- Note that all cut and fill slopes shall be seeded or loamed within 72 hours of achieving finished grade
- Note that all erosion controls shall be inspected weekly AND after every half-inch of rainfall.
- Note the limits on the open area allowed, see Env-Wq 1505.02 for detailed information.

Example note: The smallest practical area shall be disturbed during construction, but in no case shall exceed 5 acres at any one time before disturbed areas are stabilized.

Note the definition of the word "stable."

Example note: An area shall be considered stable if one of the following has occurred:

- Base course gravels have been installed in areas to be paved.
- A minimum of 85 percent vegetated growth has been established.
- A minimum of 3 inches of non-erosive material such stone or riprap has been installed.
- Or, erosion control blankets have been properly installed.
- Note the limit of time an area may be exposed.

Example note: All areas shall be stabilized within 45 days of initial disturbance.

- Provide temporary and permanent seeding specifications. Note that although reed canary grass is listed in the Green Book; it is a problematic species according to the Wetlands Bureau and therefore should not be specified.
- Provide winter construction notes that meet or exceed our standards.

Standard Winter Notes:

- All proposed vegetated areas that do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized by seeding and installing erosion control blankets on slopes greater than 3:1, and seeding and placing 3 to 4 tons of mulch per acre, secured with anchored netting, elsewhere. The installation of erosion control blankets or mulch and netting shall not occur over accumulated snow or on frozen ground and shall be completed in advance of thaw or spring melt events.
- All ditches or swales which do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized temporarily with stone or erosion control blankets appropriate for the design flow conditions.
- After October 15, incomplete road or parking surfaces where work has stopped for the winter season shall be protected with a minimum of 3 inches of crushed gravel per NHDOT item 304.3.
- Note at the end of the construction sequence that "Lot disturbance, other than that shown on the approved plans, shall not commence until after the roadway has the base course to design elevation and the associated drainage is complete and stable." This note is applicable to single/duplex family subdivisions, when lot development is not part of the permit.

NHDES-W-01-003

DRAINAGE ANALYSES

Please provide double-side 8 ½" × 11" sheets where possible but, **do not** reduce the text such that more than one page fits on one side.

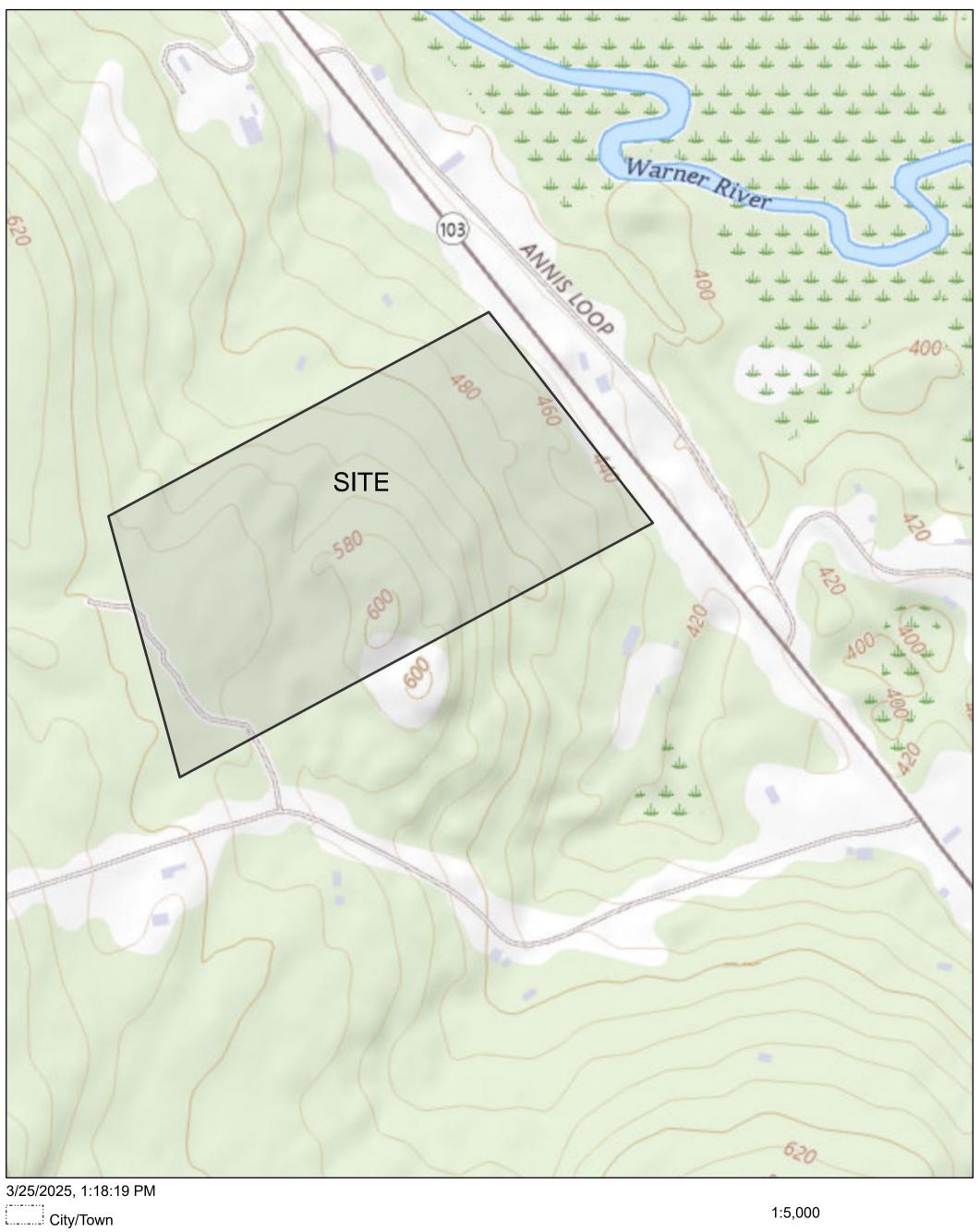
- Professional Engineer stamp.
- Rainfall amount obtained from the <u>Northeast Regional Climate Center</u>. Include extreme precipitation table as obtained from this source.
- Drainage analyses, in the following order:
 - Pre-development analysis: Drainage diagram.
 - Pre-development analysis: Area Listing and Soil Listing.
 - Pre-development analysis: Node listing 1-year (if applicable), 2-year, 10-year and 50-year.
 - Pre-development analysis: Full summary of the 10-year storm.
 - Post-development analysis: Drainage diagram.
 - Post-development analysis: Area Listing and Soil Listing.
 - Post-development analysis: Node listing for the 2-year, 10-year and 50-year.
 - Post-development analysis: Full summary of the 10-year storm.
 - Review the Area Listing and Soil Listing reports
 - Hydrologic Soil Groups (HSG) match the HSGs on the soil maps provided.
 - There is the same or less HSG A soil area after development (check for each HSG).
 - There is the same or less "woods" cover in the post-development.
 - Undeveloped land was assumed to be in "good" condition.
 - The amount of impervious cover in the analyses is correct.

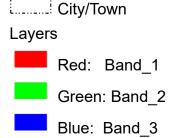
Note: A good check is to subtract the total impervious area used in the pre-analysis from the total impervious area used in the post-analysis. For residential projects without demolition occurring, a good check is to take this change in impervious area, subtract out the roadway and divide the remaining by the number of houses or units proposed. Do these numbers make sense?

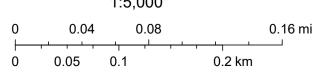
- Check the storage input used to model the ponds.
- Check to see if the artificial berms pass the 50-year storm, i.e., make sure the constructed berms on ponds are not overtopped.
- Check the outlet structure proposed and make sure it matches that modeled.
- Check to see if the total areas in the pre and post analyses are same.
- Confirm the correct NRCS storm type was modeled (Coos, Carroll and Grafton counties are Type II, all others Type III).

PRE- AND POST-CONSTRUCTION DRAINAGE AREA PLANS

- Plans printed on 34 36" by 22 24" on white paper.
- Submit these plans separate from the soil plans.
- A north arrow.
- A scale.
- Labeled subcatchments, reaches and ponds.


NHDES-W-01-003
■ Tc lines.
■ A clear delineation of the subcatchment boundaries.
Roadway station numbers.
Culverts and other conveyance structures.
PRE- AND POST-CONSTRUCTION COLOR-CODED SOIL PLANS
■ 11" × 17" sheets suitable, as long as it is readable.
■ Submit these plans separate from the drainage area plans.
A north arrow.
A scale.
■ Name of the soil scientist who performed the survey and date the soil survey took place.
2-foot contours (5-foot contours if application is for a gravel pit) as well as other surveyed features.
■ Delineation of the soil boundaries and wetland boundaries.
■ Delineation of the subcatchment boundaries.
Soil series symbols (e.g., 26).
■ A key or legend identifying each soil series symbol and its associated soil series name (for example: 26 = Windsor).
■ The hydrologic soil group color coding (A = Green, B = yellow, C= orange, D=red, Water=blue, and Impervious = gray
Please note that excavation projects (including gravel pits) have similar requirements to those above, with the following common exceptions or additions:
Drainage report is not needed if site does not have off-site flow.
5-foot contours are allowed rather than 2-foot.
No Professional Engineer stamp is needed on the plans.
Add a note to the plans that the applicant must provide NHDES a written update of the project and revised plans documenting the project status every five years from the date of the Alteration of Terrain permit.
Add reclamation notes.
A description of the subsurface conditions to the planned depth of excavation, including the elevation of the locatio of the Seasonal High Water Table (SHWT), as observed and described by a certified soil scientist, or an individual holding a valid permit as a permitted designer as issued by the department's Subsurface Systems Bureau.


For more resources, refer to the Natural Resources Conservation Service's <u>Vegetating New Hampshire Sand and Gravel Pits</u> publication.


5. MUNICIPAL SUBMISSION: WARNER

6. USGS LOCATION MAP

USGS Map by NH DES OneStop Data Mapper

USGS The National Map: National Boundaries Dataset, 3DEP Elevation Program, Geographic Names Information System, National Hydrography Dataset, National Land Cover Database, National Structures Dataset, and National Transportation Dataset; USGS Global Ecosystems; U.S.

7. PROJECT NARRATIVE

1. INTRODUCTION

A. Project Description

The project proposes the development of Warner Tax Map 7, Lots 39 and 39-1, on the west side of Route 103. The proposal seeks to develop two buildings for multi-family residence. Each building will have four units. The project will include associated parking and utilities.

The buildings will be served by on-site septic systems and wells. Access will be provided by connection to a proposed driveway off of Route 103. The buildings will share access to the driveway. The drainage system will have two pocket ponds and an infiltration basin. After treatment and mitigation of peak runoff, the water flows to the existing catch basins on Route 103 in front of the subject parcel.

B. Existing Site Conditions

The subject lot is 34.60 acres and is currently undeveloped in Warner's Residential 2 (R-2) and Residential 3 (R-3) Zoning Districts; however, the area of proposed work is entirely within the R-2 District. The abutting properties are residential or undeveloped uses. Previously, the subject lot was partially cleared. There are wetland pockets and many ledge outcroppings on site.

According to the Site-Specific Soil Survey soil mapping, the parcel consists of soils as shown below:

SSSM SYM.	SSS MAP NAME	HISS SYM.	HYDROLOGIC SOIL GRP.
55	Hermon Very Stony	121	В
442	Chichester	221	В
58	Waumbek	321	Α
829	Waumbek-Hermon Association	321	В
414	Moosilauke Poorly Drained	521	С
399	Ledge Outcrop	228	D

II. STORM DRAINAGE ANALYSIS & DESIGN

A. Methodology

In accordance with the provisions of the Town of Warner, NHDES, and generally accepted engineering practice, the 2-year, 10-year, 25-year and 50-year frequency storms have each been used in the various aspects of analysis and design of stormwater management considerations for the subject residential development project. All proposed stormwater measures have been designed for the 10-year return frequency storms, in accordance with the State regulations and for the 25-year return frequency storms, in accordance with the Town regulations.

KNA utilizes HydroCAD version 10.2 to analyze both pre and post-development watershed characteristics. This computer software system is based largely on hydrology techniques (TR-20) developed by the Soil Conservation Service (now the Natural Resources Conservation Service). In addition, the software derives Time of Concentration values using the methodology contained within USDA-S.C.S. publication Urban Hydrology for Small Watersheds Technical Release No. 55 (TR 55).

Rainfall data utilized in the analysis is obtained from the "Extreme Precipitation in a Changing Climate for New York and the New England States", version 1.12, published by the USDA, NRCS and Cornell University's Northeast Regional Climate Center and can be found in Section 9.

All design and analysis calculations performed using the referenced methodologies are attached to this report. The minimum time of concentrations used for the analysis is 6 minutes. These calculations document each catchment area, a breakdown of surface type, time of concentration, rainfall intensity, peak discharge volume, Manning's "n" value, peak velocity, and other descriptive design data for each watershed and pipe segment evaluated. In addition, the "Pre/Post Development Drainage Area Plans" graphically define and illustrate the extent of each watershed or catchment area investigated.

B. Pre-Development Drainage Conditions

In the pre-development scenario, 6 points of analysis (POA) were identified as the appropriate points to compare pre vs. post development rates of stormwater discharge. These points of analysis reflect the main discharge points of the site and were analyzed to show the impact of the proposed improvements.

The pre-development drainage model's POA is further described as follows:

10P Flow to Existing CB

20P Flow to Existing CB

30P Flow to Existing CB

40P Flow to Existing CB

50L Flow to Abutters Map 7 Lots 36 & 36-1

An additional point of analysis has been added to monitor the flow and volume to the Map 7 Lot 36-1 due to increased area (~1 acre) directed towards this parcel in post-development design versus pre-development:

60L Flow to Abutter Map 7 Lot 36-1

In general, the site slopes in an easterly direction to the catch basins along Route 103.

For a more visual description of the information presented in this section, please refer to the attached "Pre-Development Drainage Areas Plan" attached in the appendix of this report. The pre-development drainage model recognizes five points of analysis to compare pre vs. post-development peak rates of stormwater discharge.

C. Post-Development Drainage Conditions:

The same POA's that were identified in the pre-development scenario have been analyzed in the post-development scenario.

The proposed stormwater management system utilizes closed and open drainage that incorporates various best management practices for the collection, storage, and treatment of runoff. Stormwater runoff generated from the proposed development will be collected in a series of closed structures (catch basins and drain manholes) and conveyed towards the pocket ponds and the infiltration basin. The proposed ponds discharge through outlet control structures to overland flow prior to entering the closed drainage system in the Route 103 Right-Of-Way. The areas flowing towards each point of analysis are equal to or less than in comparison to the pre-development conditions. The proposal has also been designed to convey runoff in a manner consistent with the pre-development conditions. The drainage system was properly sized to control runoff for the full build-out of the project.

The proposed pocket ponds are designed to intercept groundwater and maintain a permanent pool. The ponds have been designed to mitigate the increased runoff from the proposed parking areas and common driveway.

The proposed infiltration basin is designed to infiltrate the runoff from the proposed development.

The peak stormwater runoff rate for the specific storm frequencies is presented and analyzed in the subsequent summary section of this report (Table 1). For a more visual description of the information presented in this section, please refer to the attached "Post-Development Drainage Areas Plan" attached in the appendix of this report.

D. Summary:

Through the use of the stormwater management techniques described above, we were able to implement the proposed development goals while maintaining appropriate peak rates of runoff, providing volume control, and providing treatment of stormwater generated from the proposed development. As shown in the Tables below, through the use of the aforementioned stormwater management techniques, the peak rates of stormwater discharge and volume to the point of analysis was controlled within an acceptable limit.

Table 1: Peak Flow Discharge Rate

Site Pre-Development vs. Post-Development (cfs)								
Description	2-Year		10-Year		25-Year		50-Year	
24-hr Rainfall	2.78 in/hr		4.04 in/hr		5.01 in/hr		5.89 in/hr	
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
10P (Lot 3-1)	0.85	0.84	1.93	1.93	3.00	2.99	4.07	4.05
20P (Lot7-38)	2.01	1.84	4.94	4.20	8.10	8.07	11.29	11.10
30P (Lot7-38)	0.63	0.49	1.36	0.87	2.08	1.19	2.80	1.48
40P (Lot7-38)	1.06	0.66	2.46	1.31	4.08	2.10	5.77	3.69
50L (Lots 7-36 & 7-36-1)	0.04	0.04	0.13	0.13	0.25	0.25	0.39	0.39
Site Pre-Development vs. Post-Development Monitoring of Flow to Abutter Map 7 Lot 36-1 (cfs)								
60L (Lot 7-36-1)	0.19	0.18	0.79	0.63	1.55	1.29	2.37	2.26

Table 2: Channel Protection Requirements

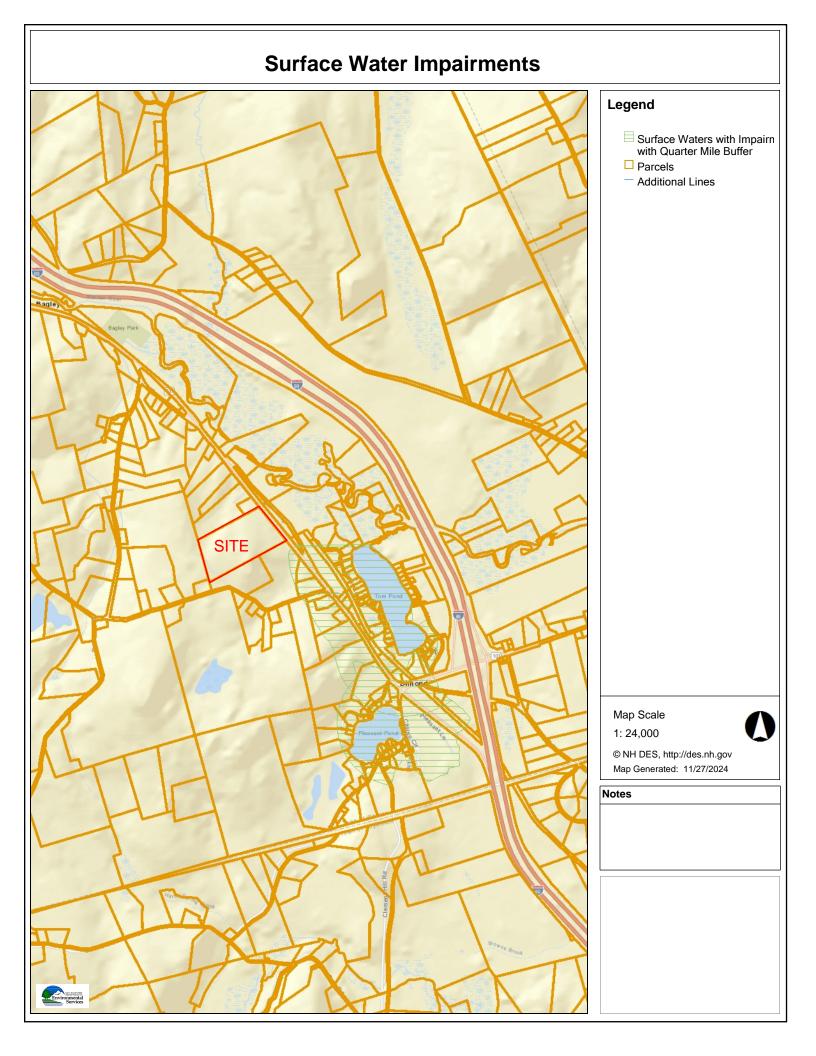
Site Pre-Development vs. Post-Development Flow Volume (af)					
Description	2-Year		Comments		
24- hr Rainfall	2.78 in/hr				
	Pre	Post			
10P	0.104	0.103	NHDES 1507.05,(b),(1), a		
20P	0.255	0.247	NHDES 1507.05,(b),(1), a		
30P	0.083	0.053	NHDES 1507.05,(b),(1), a		
40P	0.150	0.133	NHDES 1507.05,(b),(1), a		
50L	0.006	0.006	NHDES 1507.05,(b),(1), a		
Site Pre-Development vs. Post-Development Monitoring of Flow to Abutter					
Map 7 Lot 36-1 (cfs)					
60L	0.041	0.032			

III. EROSION & SEDIMENTATION CONTROL PROVISIONS

A. Temporary Erosion Control Measures

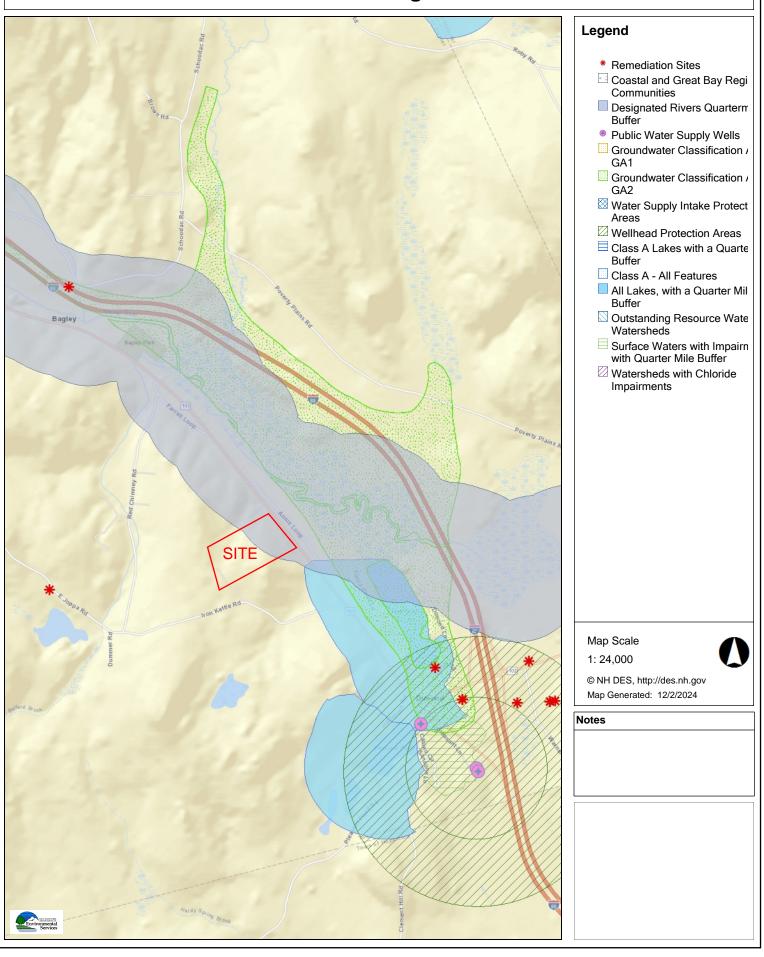
As an integral part of the engineering design of this site, an erosion and sedimentation control plan has been developed with the intent of limiting the potential for soil loss and associated receiving water quality degradation, both during and after the construction period. As the project plans indicate, traditional temporary erosion and sedimentation control devices and practices, such as siltation fencing, block and gravel sediment filters, and seeding have been specified for use during the construction period. In preparation of these provisions, reference was made to the New Hampshire Stormwater Manual; Volume 3: Erosion and Sediment Temporary Controls During Construction. Construction details for each temporary erosion control measure and practice specified have been added to the project plans. These plans also contain a number of erosion control notes, which are offered to the selected contractor in order to supplement the specified measures and practices to the extent practical.

B. Construction Sequence


A site-specific construction sequence sensitive to limiting soil loss due to erosion and associated water quality degradation was prepared specifically for this project and is shown on the project plans. As pointed out in the erosion control notes, it is important for the contractor to recognize that proper judgment in the implementation of work will be essential if erosion is to be limited and protection of completed work is to be realized. Moreover, any specific changes in sequence and/or field conditions affecting the ability of specific erosion control measures to adequately serve their intended purpose should be reported to this office by the contractor. Furthermore, the contractor is encouraged to supplement specified erosion control measures during the construction period where and when in his/ her best judgment, additional protection is warranted.

C. Permanent Erosion Control Measures

In the design of this site, consideration was given to limiting the potential for long-term erosion of completed improvements. As a result, several permanent erosion control measures were incorporated into the site design. These provisions include:


- Specification of a turf establishment schedule and seed mixture, utilizing materials and workmanship recognized as appropriate for the site conditions at hand:
- 2) The design has provided catch basins to capture runoff and reduce the overland flow, thereby reducing erosion.

8. SURFACE WATER IMPAIRMENTS

9. WEB GIS FIGURES

Web GIS Figure

10. WARNER GROUNDWATER PROTECTION OVERLAY DISTRICT

Groundwater Protection Overlay District

TOWN OF WARNER, NH

Legend

Proposed Groundwater Protection Overlay District

Town Boundary

Village Water District

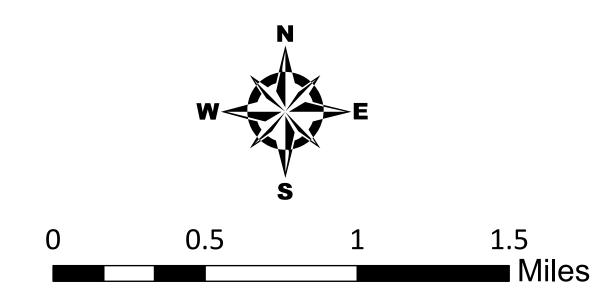
Aquifer Full Extent

Water Resources

Lakes and Ponds

Rivers and Streams

Intermittent Streams


Roads

/ Interstates

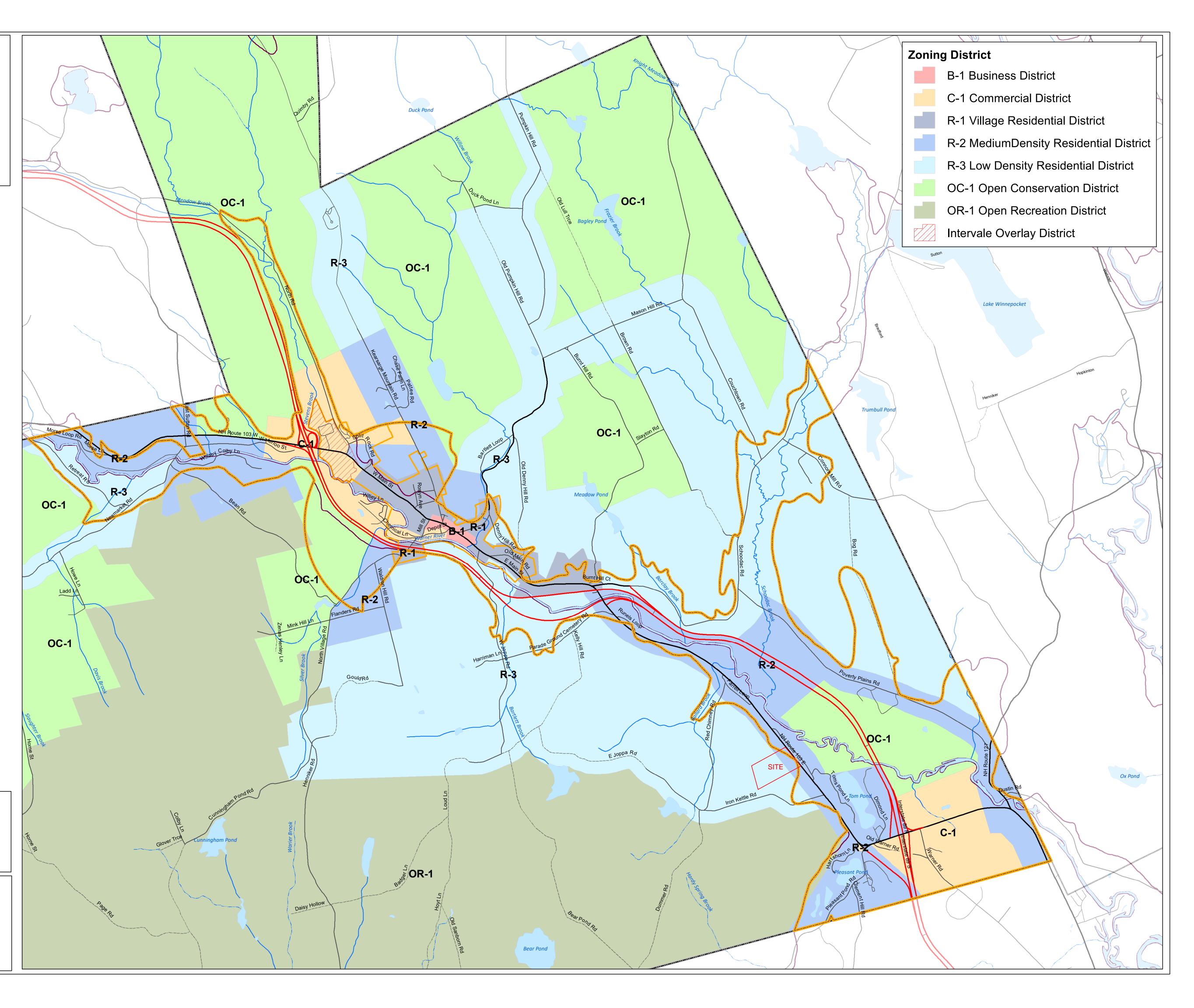
Class I and II State Highways

Class V Town Maintained Roads

Class VI Unmaintained Roads

March 14, 2023

This map was produced by the Central NH Regional Planning Commission for the Town of Warner. It is intended for planning purposes only.


Data Sources: NH GRANIT, NH Dept. of Environmental Services, NH Dept. of Transportation, FEMA, CNHRPC, Town of Warner, US Geologic Survey, Hazard Mitigation Subcommittee input. Corrections should be provided to the Town of Warner and to CNHRPC.

Central New Hampshire Regional Planning Commission

28 Commercial Street, Suite 3 Concord, NH 03301

11.	NEW HAMPSHIRE NATURAL	HERITAFE	INVENTORY	DATABASE
CH	ECK			

NHB DataCheck Results Letter

NH Natural Heritage Bureau

Please note: maps and NHB record pages are **confidential** and shall be redacted from public documents.

To: Jason Lopez, Keach-Nordstrom Associates, Inc.

10 Commerce Park North Suite 3B

Bedford, NH 03110

jlopez@keachnordstrom.com

From: NHB Review

NH Natural Heritage Bureau

Main Contact: Ashley Litwinenko - nhbreview@dncr.nh.gov

cc: NHFG Review

Date: 06/13/2024 (valid until 06/13/2025)

Re: DataCheck Review by NH Natural Heritage Bureau and NH Fish & Game

Permits: MUNICIPAL POR - Warner, NHDES - Alteration of Terrain Permit, USEPA - Stormwater Pollution Prevention

NHB ID: NHB24-0767

Town: Warner

Location: NH Route 103

Project Description: Four lot subdivision with each lot containing a 4 unit building. All lots served by a common

driveway.

Next Steps for Applicant:

NHB's database has been searched for records of rare species and exemplary natural communities. Please carefully read the comments and consultation requirements below.

NHB Comments: No comments at this time.

NHFG Comments: Please refer to NHFG consultation requirements below.

NHB Consultation

If this NHB DataCheck letter includes records of rare plants and/or natural communities/systems, please contact NHB and provide any requested supplementary materials by emailing nhbreview@dncr.nh.gov.

If this NHB DataCheck letter DOES NOT include any records of rare plants and/or natural communities/systems, no further consultation with NHB is required.

NH Fish and Game Department Consultation

If this NHB DataCheck letter DOES NOT include <u>ANY</u> wildlife species records, then, based on the information submitted, no further consultation with the NH Fish and Game Department pursuant to Fis 1004 is required.

NHB DataCheck Results Letter

NH Natural Heritage Bureau

Please note: maps and NHB record pages are confidential and shall be redacted from public documents.

If this NHB DataCheck letter includes a record for a threatened (T) or endangered (E) wildlife species, consultation with the New Hampshire Fish and Game Department under Fis 1004 may be required. To review the Fis 1000 rules (effective February 3, 2022), please go to https://www.wildlife.nh.gov/wildlife-and-habitat/nongame-and-endangered-species/environmental-review. All requests for consultation and submittals should be sent via email to NHFGreview@wildlife.nh.gov or can be sent by mail, and must include the NHB DataCheck results letter number and "Fis 1004 consultation request" in the subject line.

If the NHB DataCheck response letter does not include a threatened or endangered wildlife species but includes other wildlife species (e.g., Species of Special Concern), consultation under Fis 1004 is not required; however, some species are protected under other state laws or rules, so coordination with NH Fish & Game is highly recommended or may be required for certain permits. While some permitting processes are exempt from required consultation under Fis 1004 (e.g., statutory permit by notification, permit by rule, permit by notification, routine roadway registration, docking structure registration, or conditional authorization by rule), coordination with NH Fish & Game may still be required under the rules governing those specific permitting processes, and it is recommended you contact the applicable permitting agency. For projects not requiring consultation under Fis 1004, but where additional coordination with NH Fish and Game is requested, please email NHFGreview@wildlife.nh.gov, and include the NHB DataCheck results letter number and "review request" in the email subject line.

Contact NH Fish & Game at (603) 271-0467 with questions.

NHB DataCheck Results Letter

NH Natural Heritage Bureau

Please note: maps and NHB record pages are confidential and shall be redacted from public documents.

NHB Database Records:

The following record(s) have been documented in the vicinity of the proposed project. Please see the map and detailed information about the record(s) on the following pages.

Vertebrate species	State ¹	Federal	Notes
Wood Turtle (Glyptemys	SC		Contact the NH Fish & Game Dept (see below).
insculpta)			

¹Codes: "E" = Endangered, "T" = Threatened, "SC" = Special Concern, "--" = an exemplary natural community, or a rare species tracked by NH Natural Heritage that has not yet been added to the official state list.

An asterisk (*) indicates that the most recent report for that occurrence was 20 or more years ago.

For all animal reviews, refer to 'IMPORTANT: NHFG Consultation' section above.

<u>Disclaimer</u>: NHB's database can only tell you of <u>known</u> occurrences that have been reported to NHFG/NHB. Known occurrences are based on information gathered by qualified biologists or members of the public, reported to our offices, and verified by NHB/NHFG.

However, many areas have never been surveyed, or have only been surveyed for certain species.

NHB recommends surveys to determine what species/natural communities are present onsite.

NHB DataCheck Results Letter

NH Natural Heritage Bureau

Please note: maps and NHB record pages are **confidential** and shall be redacted from public documents.

NHB24-0767

NHB DataCheck Results Letter

NH Natural Heritage Bureau

Please note: maps and NHB record pages are confidential and shall be redacted from public documents.

NHB24-0767 EOCODE: ARAAD02020*161*NH

New Hampshire Natural Heritage Bureau - Animal Record

Wood Turtle (Glyptemys insculpta)

Legal Status Conservation Status

Federal: Not listed Global: Imperiled due to rarity or vulnerability

State: Special Concern State: Rare or uncommon

Description at this Location

Conservation Rank: Fair quality, condition and/or landscape context ('C' on a scale of A-D).

Comments on Rank: --

Detailed Description: 2022: Area 15062: 1 adult observed, sex unknown. 2011: Area 12918: 1 adult observed,

dead on road. 2007: Area 12247: 1 observed. 2005: Area 12133: 1 observed.

General Area: 2022: Area 15062: Fallow field with clover, cinquefoil, dandelion, and other grasses and

forbs. 2011: Area 12918: Roadside. 2007: Area 12247: This area contains a relatively large, open floodplain forest of white pine, maple, American hophornbeam, and various grasses and other herbaceous plants. 2005: Area 12133: Residential yard.

General Comments: --Management --

Comments:

Location

Survey Site Name: West Branch of Hoyt River
Managed By: Bradford Pines Natural Area

County: Merrimack Town(s): Bradford Size: 40.9 acres

Size: 40.9 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.

Directions: 2022: Area 15062: Field next to Hoyt Brook on east side of Center Road in Bradford, just south

of NH Route 103 and Warner River. 2011: Area 12918: On Warner Road (Rte. 103) near Bradford town line. 2007: Area 12247: In the West Branch Warner River, about 500 feet downstream from the large white pines of the Bradford Natural Pines area. 2005: Area 12133:

56 Fairgrounds Road, Bradford.

Dates documented

First reported: 2005-06-11 Last reported: 2022-05-21

NHB DataCheck Results Letter

NH Natural Heritage Bureau

<u>Please note: maps and NHB record pages are confidential and shall be redacted from public documents.</u>

NHB24-0767 EOCODE: ARAAD02020*161*NH

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

12. WEB SOIL SURVEY

MAP LEGEND

â

0

Δ

Water Features

Transportation

Background

Spoil Area

Stony Spot

Wet Spot

Other

Rails

US Routes

Major Roads

Local Roads

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways

Aerial Photography

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

... Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

iviaisii oi swaii

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

+ Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Merrimack and Belknap Counties, New

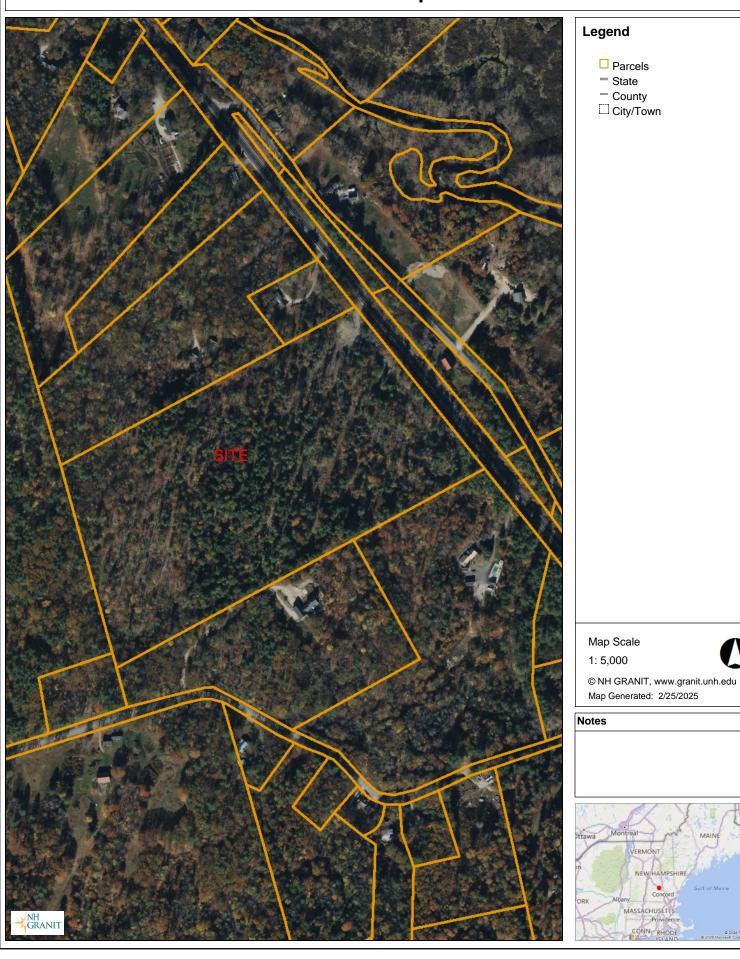
Hampshire

Survey Area Data: Version 29, Aug 22, 2023

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Oct 6, 2022—Oct 22, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.


Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
35B	Champlain loamy fine sand, 3 to 8 percent slopes	224.3	16.9%
35C	Champlain loamy fine sand, 8 to 15 percent slopes	50.2	3.8%
35E	Champlain loamy fine sand, 15 to 60 percent slopes	36.2	2.7%
104A	Podunk fine sandy loam, 0 to 3 percent slopes, frequently flooded	21.1	1.6%
105A	Rumney fine sandy loam, 0 to 3 percent slopes, frequently flooded	3.7	0.3%
194A	Catden mucky peat, 0 to 1 percent slopes, ponded	16.2	1.2%
220C	Boscawen fine sandy loam, 8 to 15 percent slopes	13.0	1.0%
300B	Udipsamments, 0 to 6 percent slopes	9.0	0.7%
380C	Tunbridge-Lyman-Becket complex, 8 to 15 percent slopes, very stony	132.3	10.0%
380D	Tunbridge-Lyman-Becket complex, 15 to 25 percent slopes, very stony	116.7	8.8%
394A	Chocorua mucky peat, 0 to 1 percent slopes	16.8	1.3%
406A	Medomak mucky silt loam, 0 to 2 percent slopes, frequently flooded	183.8	13.9%
415B	Moosilauke fine sandy loam, 3 to 8 percent slopes, very stony	48.2	3.6%
459D	Metacomet fine sandy loam, 15 to 25 percent slopes, very stony	13.4	1.0%
461E	Woodstock-Millsite-Rock outcrop complex, 35 to 60 percent slopes	3.2	0.2%
479C	Gilmanton fine sandy loam, 8 to 15 percent slopes, very stony	172.7	13.0%
480C	Millsite-Woodstock-Henniker complex, 8 to 15 percent slopes, very stony	158.9	12.0%
480D	Millsite-Woodstock-Henniker complex, 15 to 25 percent slopes, very stony	50.9	3.8%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
613A	Croghan loamy fine sand, 0 to 8 percent slopes, wooded	16.9	1.3%
894A	Meadowsedge peat, 0 to 1 percent slopes	7.3	0.5%
W	Water	31.0	2.3%
Totals for Area of Interest		1,325.7	100.0%

13. AERIAL PHOTOGRAPH

Aerial Map

14. SITE PHOTOGRAPHS

Photo No. 1: Looking west on Map 7 Lot 39 (taken: 2/3/25)

Civil Engineering Land Surveying Landscape Architecture

Photo No. 3: Looking north to Route 103 from Map 7 Lot 39 (taken: 2/3/25)

Photo No. 4: Looking south on Map 7 Lot 39 (taken: 2/3/25)

Civil Engineering Land Surveying Landscape Architecture

15. GRV CALCULATIONS

GROUNDWATER RECHARGE VOLULME (GRV) CALCULATION (Env-Wq 1507.04)

0.44	ac	Area of HSG A soil that was replaced by impervious cover	0.40"
0.42	ac	Area of HSG B soil that was replaced by impervious cover	0.25"
	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.33	inches	Rd = Weighted groundwater recharge depth	
0.281	ac-in	GRV = AI * Rd	
1,020	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

16. BMP WORKSHEETS

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: Infiltration Practice 21P

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable.

Yes		Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	← yes
2.46	ac	A = Area draining to the practice	3.24
0.64	ac	A _I = Impervious area draining to the practice	* "
0.26	decimal	I = Percent impervious area draining to the practice, in decimal form	
0.28	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.70	ac-in	WQV= 1" x Rv x A	
2,537	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
634	cf	25% x WQV (check calc for sediment forebay volume)	
N	Α	Method of pretreatment? (not required for clean or roof runoff)	
-	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	> 25%WQV
3,199	cf	V = Volume ¹ (attach a stage-storage table)	> WQV
238	sf	A _{SA} = Surface area of the bottom of the pond	5
3.00	iph	Ksat _{DESIGN} = Design infiltration rate ²	- 3
42.6	hours	$I_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	< 72-hrs
466.00	feet	E _{BTM} = Elevation of the bottom of the basin	
464.22	feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	oit)
456.89	feet	E _{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	t pit)
1.78	feet	D _{SHWT} = Separation from SHWT	≥ * ³
9.1	feet	D _{ROCK} = Separation from bedrock	> * ³
	ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	_ > 24"
1,11,7=1,-	ft	D _T = Depth of trench, if trench proposed	4 - 10 ft
	Yes/No	If a trench or underground system is proposed, has observation well been provid	ed? ←yes
		If a trench is proposed, does materialmeet Env-Wq 1508.06(k)(2) requirements. ⁴	← yes
179/12/03/05	Yes/No	If a basin is proposed, Is the perimeter curvilinear, and basin floor flat?	← yes
3.0	:1	If a basin is proposed, pond side slopes.	<u>≥</u> 3:1
469.75	ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
469.82	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
470.00	ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)	
YES		10 peak elevation ≤ Elevation of the top of the trench? ⁵	← yes
YES		If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes
	All to the second secon		

- 1. Volume below the lowest invert of the outlet structure and excludes forebay volume
- 2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate
- 3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.
- 4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.
- 5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:						
×						

Prepared by Keach-Nordstrom Associates, Inc. HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC Printed 11/19/2025

Summary for Pond 21P: Infiltration Basin

2.455 ac, 25.89% Impervious, Inflow Depth > 1.68" for 10 yr event Inflow Area = Inflow 1.43 cfs @ 12.30 hrs, Volume= 0.343 af Outflow 1.36 cfs @ 12.51 hrs, Volume= 0.281 af, Atten= 5%, Lag= 12.9 min Discarded = 0.13 cfs @ 12.51 hrs, Volume= 0.140 af 1.23 cfs @ 12.51 hrs, Volume= Primary 0.141 af Routed to Reach 20R: Overland Flow to 20P Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Reach 20R: Overland Flow to 20P

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3 Peak Elev= 469.75' @ 12.51 hrs Surf.Area= 1,822 sf Storage= 3,377 cf

Flood Elev= 470.00' Surf.Area= 1,983 sf Storage= 3,854 cf

Plug-Flow detention time=141.0 min calculated for 0.281 af (82% of inflow) Center-of-Mass det. time= 62.2 min (898.9 - 836.7)

Volume	Invert	Avail.9	Storage	Storage Description	n		
#1	466.00'	3	3,854 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)	
Elevatio		ırf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
466.0	00	238	61.0	0	0	238	
468.0	00	887	160.0	1,056	1,056	1,993	
470.0	00	1,983	201.0	2,797	3,854	3,225	
Device	Routing	Inve		et Devices			
#1	Discarded	466.0		0 in/hr Exfiltration			
#2	Primary	465.0		" Round HDPE Cu 5.0' CPP, square e		0.500	
				/ Outlet Invert= 465 013 Corrugated PE		.0100 '/' Cc= 0.900 Flow Area= 1.77 sf	
#3	Device 2	469.6	5' 2.0''	x 2.0" Horiz. Grate	X 10.00 columns		
				rows C= 0.600 in 36 ed to weir flow at lov		31% open area)	
#4	Secondary	469.7		ong x 6.0' breadth			
				이 얼마 이렇게 맛있게 다 있는데 맛있었다. 이 없는데 말에 걸 때에 하는 것이		0 1.40 1.60 1.80 2.00	J
			2.50	3.00 3.50 4.00 4.	50 5.00 5.50		

2.65 2.66 2.66 2.67 2.69 2.72 2.76 2.83

Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65

Discarded OutFlow Max=0.13 cfs @ 12.51 hrs HW=469.75' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.13 cfs)

Primary OutFlow Max=1.23 cfs @ 12.51 hrs HW=469.75' TW=453.59' (Dynamic Tailwater) -2=HDPE Culvert (Passes 1.23 cfs of 17.02 cfs potential flow) **1-3=Grate** (Weir Controls 1.23 cfs @ 1.03 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=466.00' TW=453.50' (Dynamic Tailwater) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Stage-Area-Storage for Pond 21P: Infiltration Basin

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
466.00	238	0	468.60	1,170	1,671
466.05	249	12	468.65	1,195	1,731
466.10	261	25	468.70	1,221	1,791
466.15	272	38	468.75	1,247	1,853
466.20	284	52	468.80	1,273	1,916
466.25	297	67	468.85	1,300	1,980
466.30	309	82	468.90	1,326	2,046
466.35	322	98	468.95	1,353	2,113
466.40	335	114	469.00	1,381	2,181
466.45	348	131	469.05	1,408	2,251
466.50	362	149	469.10	1,436	2,322
466.55	375	167	469.15	1,464	2,394
466.60	389	186	469.20	1,492	2,468
466.65	404	206	469.25	1,521	2,544
466.70	418	227	469.30	1,550	2,620
466.75	433	248	469.35	1,579	2,699
466.80	448	270	469.40	1,609	2,778
466.85	463	293	469.45	1,638	2,859
466.90	479	316	469.50	1,668	2,942
466.95	495	341	469.55	1,698	3,026
467.00	511	366	469.60	1,729	3,112
467.05	527	392	469.65	1,760	3,199
467.10	544	419	469.70	1,791	3,288
467.15	561	446	469.75	1,822	3,378
467.20	578	475	469.80	1,854	3,470
467.25	595	504	469.85	1,886	3,564
467.30	613	534	469.90	1,918	3,659
467.35	631	565	469.95	1,950	3,755
467.40	649	597	470.00	1,983	3,854
467.45	667	630	17 0.00	1,000	0,004
467.50	686	664			
467.55	705	699			
467.60	724	735			
467.65	744	771			
467.70	763	809	1 - 1		
467.75	783	848			
467.80	804	887			
467.85	824	928			
467.90	845	970			
467.95	866	1,012			
468.00	887	1,056	1 = =		
468.05	909	1,101			
468.10	931	1,147			
468.15	954	1,194			
468.20	977	1,243			
468.25	1,000	1,292			
468.30	1,024	1,343			
468.35	1,047	1,394			
468.40	1,071	1,447			
468.45	1,096	1,502			
468.50	1,120	1,557			
468.55	1,145	1,614			
-00.00	1, 140	1,014			

Post

Volume

Davisa Bauting

Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC Printed 11/19/2025

Summary for Pond 21P: Infiltration Basin

2.455 ac, 25.89% Impervious, Inflow Depth > 2.90" for 50 yr event Inflow Area = Inflow 3.06 cfs @ 12.38 hrs, Volume= 0.593 af Outflow = 3.05 cfs @ 12.40 hrs, Volume= 0.521 af, Atten= 0%, Lag= 1.2 min Discarded = 0.13 cfs @ 12.40 hrs, Volume= 0.154 af 2.75 cfs @ 12.40 hrs, Volume= Primary = 0.359 af Routed to Reach 20R: Overland Flow to 20P Secondary = 0.18 cfs @ 12.40 hrs, Volume= 0.008 af

Routed to Reach 20R: Overland Flow to 20P

Invert

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Peak Elev= 469.82' @ 12.40 hrs Surf.Area= 1,867 sf Storage= 3,507 cf

Flood Elev= 470.00' Surf.Area= 1,983 sf Storage= 3,854 cf

Avail.Storage Storage Description

Plug-Flow detention time= 88.8 min calculated for 0.521 af (88% of inflow) Center-of-Mass det. time= 32.6 min (857.3 - 824.7)

Invest Outlet Devices

#1	466.00'	3,854 cf	Custom Stage Date	ta (Irregular)Listed	below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
466.00	238	61.0	0	0	238
468.00 470.00	887 1,983	160.0 201.0	1,056 2,797	1,056 3,854	1,993 3,225

De	evice	Routing	invert	Outlet Devices
	#1	Discarded	466.00'	3.000 in/hr Exfiltration over Surface area
	#2	Primary	465.00'	18.0" Round HDPE Culvert
				L= 25.0' CPP, square edge headwall, Ke= 0.500
				Inlet / Outlet Invert= 465.00' / 464.75' S= 0.0100 '/' Cc= 0.900
				n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
	#3	Device 2	469.65'	2.0" x 2.0" Horiz. Grate X 10.00 columns
				X 10 rows C= 0.600 in 36.0" x 36.0" Grate (31% open area)
				Limited to weir flow at low heads
	#4	Secondary	469.75'	4.0' long x 6.0' breadth Broad-Crested Rectangular Weir
				Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
				2.50 3.00 3.50 4.00 4.50 5.00 5.50
				Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65
				2.65 2.66 2.66 2.67 2.69 2.72 2.76 2.83

Discarded OutFlow Max=0.13 cfs @ 12.40 hrs HW=469.82' (Free Discharge)
1=Exfiltration (Exfiltration Controls 0.13 cfs)

Primary OutFlow Max=2.75 cfs @ 12.40 hrs HW=469.82' TW=453.63' (Dynamic Tailwater)

2=HDPE Culvert (Passes 2.75 cfs of 17.17 cfs potential flow)

3=Grate (Weir Controls 2.75 cfs @ 1.35 fps)

Secondary OutFlow Max=0.18 cfs @ 12.40 hrs HW=469.82' TW=453.63' (Dynamic Tailwater) 4=Broad-Crested Rectangular Weir (Weir Controls 0.18 cfs @ 0.63 fps)

Printed 11/19/2025

Stage-Area-Storage for Pond 21P: Infiltration Basin

		.go / ou oto.			on Buom
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface	Storage
				(sq-ft)	(cubic-feet)
466.00	238	0	468.60	1,170	1,671
466.05	249	12	468.65	1,195	1,731
466.10	261	25	468.70	1,221	1,791
466.15	272	38	468.75	1,247	1,853
466.20	284	52	468.80	1,273	1,916
466.25	297	67	468.85	1,300	1,980
466.30	309	82	468.90	1,326	2,046
466.35	322	98	468.95	1,353	2,113
466.40	335	114	469.00	1,381	2,181
466.45	348	131	469.05	1,408	2,251
466.50	362	149	469.10	1,436	2,322
466.55	375	167	469.15	1,464	2,394
466.60	389	186	469.20	1,492	2,468
466.65	404	206	469.25	1,521	2,544
466.70	418	227	469.30	1,550	2,620
466.75	433	248	469.35	1,579	2,699
466.80	448	270	469.40	1,609	2,778
466.85	463	293	469.45	1,638	2,859
466.90	479	316	469.50	1,668	2,942
466.95	495	341	469.55	1,698	3,026
467.00	511	366	469.60	1,729	3,112
467.05	527	392	469.65	1,760	3,199
467.10	544	419	469.70	1,791	3,288
467.15	561	446	469.75	1,822	3,378
467.20	578	475	469.80	1,854	
467.25	595	504	469.85		3,470
467.30				1,886	3,564
	613	534	469.90	1,918	3,659
467.35	631	565	469.95	1,950	3,755
467.40	649	597	470.00	1,983	3,854
467.45	667	630			
467.50	686	664			
467.55	705	699			
467.60	724	735			
467.65	744	771			
467.70	763	809			
467.75	783	848			
467.80	804	887			
467.85	824	928			
467.90	845	970			
467.95	866	1,012			
468.00	887	1,056	10.5		
468.05	909	1,101			
468.10	931	1,147			
468.15	954	1,194			
468.20	977	1,243	1		
468.25	1,000	1,292			
468.30	1,024	1,343			
468.35	1,047	1,394			
468.40	1,071	1,447			
468.45	1,096	1,502			
468.50	1,120	1,557			
468.55	1,145	1,614			
		-,			

STORMWATER POND DESIGN CRITERIA Env-Wq 1508.03

Type/Node Name:

Pocket Pond 22P

Enter the type of stormwater pond (e.g., Wet Pond) and the node name in the drainage analysis, if applicable.

2.46		
2.46 ac	A = Area draining to the practice	
0.64 ac	A _I = Impervious area draining to the practice	
0.26 decim	The interest of the control of the c	
0.28 unitles	Production Control and Control	
0.70 ac-in	WQV= 1" x Rv x A	li li
2,537 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
254 cf	10% x WQV (check calc for sediment forebay and micropool volume)	
1,269 cf	50% x WQV (check calc for extended detention volume)	
292 cf	V_{SED} = Sediment forebay volume	≥ 10%WQV
	V_{PP} = Permanent pool volume (volume below the lowest invert of the o	utlet structure) Attach
3,827 cf	stage-storage table.	25
no cf	Extended Detention? ¹	≤ 50% WQV
-	V_{ED} = Volume of extended detention (if "yes" is given in box above)	
	E _{ED} = Elevation of WQV if "yes" is given in box above ⁴	
- cfs	$2Q_{avg} = 2*V_{ED} / 24 \text{ hrs } * (1 \text{hr } / 3600 \text{ sec}) \text{ (used to check against } Q_{EDmax} \text{ b}$	pelow)
cfs	Q_{EDmax} = Discharge at the E_{ED} (attach stage-discharge table)	< 2Q _{avg}
- hours	T_{ED} = Drawdown time of extended detention = $2V_{ED}/Q_{EDmax}$	≥ 24-nrs
3.00 :1	Pond side slopes	≥3:1
468.63 ft	Elevation of seasonal high water table	
469.35 ft	Elevation of lowest pond outlet	
463.63 ft	Max floor = Maximum elevation of pond bottom (ft)	m (1 m)
460.63 ft	Minimum floor (to maintain depth at less than 8')	≤ 8 ft
466.00 ft	Elevation of pond floor ³	Max floor and > Min floor
80.00 ft	Length of the flow path between the inlet and outlet at mid-depth	Mission respect
30.00 ft	Average width ([average of the top width + average bottom width]/2)	
2.67 :1	Length to average width ratio	≥ 3:1
No Yes/No	RANGE STATE OF THE	← Yes
Yes Yes/No	Are the inlet and outlet located as far apart as possible.	← Yes
No Yes/No	Is there a manually-controlled drain to dewater the pond over a 24hr pe	eriod?
If no state v		
	What mechanism is proposed to prevent the outlet structure from clog	ging (applicable for
	orifices/weirs with a dimension of <6")?	
471.54 ft	Peak elevation of the 50-year storm event	
472.00 ft	Berm elevation of the pond	
YES	50 peak elevation ≤ the berm elevation?	←yes

^{1.} If the entire WQV is stored in the perm. pool, there is no extended det., and the following five lines do not apply.

3. If the pond floor elevation is above the max floor elev., a hydrolo depth of 3 feet can be maintained. (First check whether a revised "le	
Designer's Notes:	-
NHDES Alteration of Terrain	Last Revised: December 2017

2. This is the elevation of WQV if the hydrologic analysis is set up to include the permanent pool storage in the node description.

Volume

Prepared by Keach-Nordstrom Associates, Inc. HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

Printed 11/19/2025

Summary for Pond 22P: Pocket Pond 22P

Inflow Area = 2.455 ac, 25.89% Impervious, Inflow Depth > 2.96" for 50 yr event Inflow 6.85 cfs @ 12.11 hrs, Volume= 0.606 af

Outflow 3.06 cfs @ 12.38 hrs, Volume= = 0.593 af, Atten= 55%, Lag= 15.9 min

Primary 3.06 cfs @ 12.38 hrs, Volume= 0.593 af

Routed to Pond 21P: Infiltration Basin

0.00 hrs, Volume= Secondary = 0.00 cfs @ 0.000 af

Routed to Pond 21P: Infiltration Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Starting Elev= 469.35' Surf.Area= 1,930 sf Storage= 3,827 cf

Peak Elev= 471.54 @ 12.38 hrs Surf.Area= 4,538 sf Storage= 9,814 cf (5,988 cf above start)

Flood Elev= 472.00' Surf.Area= 5,229 sf Storage= 12,066 cf (8,239 cf above start)

Avail.Storage Storage Description

Plug-Flow detention time= 144.9 min calculated for 0.505 af (83% of inflow)

Center-of-Mass det. time= 28.1 min (824.7 - 796.6)

Invert

#1	466.00' 12,066 cf Custom Stage Data (Irregular)Listed below (Recalc)										
Elevation (fee		urf.Area l (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)					
466.0	00	492	103.6	Ó	Ó	492					
468.0		1,258	151.6	1,691	1,691	1,500					
470.0		2,304	194.4	3,510	5,201	2,728					
471.0	00	2,916	213.3		7,805	3,374					
471.5	50	4,482	493.2	The state of the s	9,640	19,111					
472.0	00	5,229	502.6		12,066	19,897					
Device	Routing	Invert	Outl	et Devices							
#1	Primary	469.00		" Round HDPE C	ulvort						
" '	Timary	400.00		1.0' CPP, square		e= 0.500					
						= 0.0476 '/' Cc= 0.900					
						, Flow Area= 0.79 sf					
#2	Device 1	469.35		Vert. 5" Orifices		, 1101171100 0.7001					
				ted to weir flow at I							
#3	Device 1	470.80		Vert. 5" Orifices							
			Limi	ted to weir flow at I	ow heads						
#4	Device 1	471.25	Wei	r, Cv= 2.62 (C= 3.2	28)						
				d (feet) 0.00 0.40							
				th (feet) 0.75 0.75							
#5	Device 1	471.65	2.0"	x 2.0" Horiz. Graf	te X 10.00 column	าร					
			X 10) rows C= 0.600 in	36.0" x 36.0" Grate	e (31% open area)					
			Limi	ted to weir flow at I	ow heads						
#6	Secondary	471.75	4.0'	long x 6.0' bread	th Broad-Crested	l Rectangular Weir					
						1.20 1.40 1.60 1.80 2.00					
				3.00 3.50 4.00							
			Coe	f. (English) 2.37 2	.51 2.70 2.68 2.6	68 2.67 2.65 2.65 2.65					
			2.65	2.66 2.66 2.67	2.69 2.72 2.76 2.	83					

Prepared by Keach-Nordstrom Associates, Inc.

Printed 11/19/2025

HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

Primary OutFlow Max=3.06 cfs @ 12.38 hrs HW=471.54' TW=469.82' (Dynamic Tailwater) -1=HDPE Culvert (Passes 3.06 cfs of 4.96 cfs potential flow) -2=5" Orifices (Orifice Controls 1.72 cfs @ 6.31 fps) -3=5" Orifices (Orifice Controls 0.96 cfs @ 3.50 fps) -4=Weir (Weir Controls 0.38 cfs @ 1.76 fps) 5=Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=469.35' TW=466.00' (Dynamic Tailwater) 6=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Storage (cubic-feet)

8,446

8,811

9,209

9,640

10,096

10,566

11,051

11,551

12,066

Printed 11/19/2025

HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 22P: Pocket Pond 22P

Surface

(sq-ft)

3,502

3,815

4,142

4,482

4,627

4,774

4,923

5,075

5,229

Elevation

(feet)

471.20

471.30

471.40

471.50

471.60

471.70

471.80

471.90

472.00

	939		
Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	
466.00	492	0	
466.10	522	51	
466.20	553	104	
466.30	584	161	
466.40	617	221	
466.50	650	285	
466.60	685	351	
466.70	720	422	
466.80	756	495	
466.90	793	573	
467.00	831	654	
467.10	870	739	
467.20	909	828	
467.30	950	921	
467.40	991	1,018	
467.50	1,033	1,119	
467.50	1,077	1,225	
467.50	1,121	1,335	
467.60	1,166	1,449	
467.70	1,211	1,568	
468.30	1,258	1,691	
468.30	1,303	1,819	
468.10	1,348	1,952	
468.30	1,395	2,089	
468.30	1,442	2,231	
468.40	1,490	2,377	
468.50	1,539	2,529	
468.80	1,588	2,685	
468.80	1,639	2,846	
468.90	1,690	3,013	
469.90	1,742	3,184	
469.10	1,794	3,361	
469.20	1,848	3,543	
469.30	1,902	3,731	
469.40 469.50 469.60 469.70 469.80 469.90 470.00 470.10 470.20 470.30 470.40 470.50 470.60 470.70 470.80 470.90 471.10	1,957 2,013 2,070 2,127 2,185 2,244 2,304 2,362 2,421 2,480 2,540 2,601 2,663 2,725 2,788 2,852 2,916 3,202	3,924 4,122 4,326 4,536 4,752 4,973 5,201 5,434 5,673 5,918 6,169 6,426 6,689 6,959 7,234 7,516 7,805 8,111	

Post

Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC Printed 11/19/2025

Summary for Pond 23P: Sediment Forebay 23P

Inflow Area = 2.455 ac, 25.89% Impervious, Inflow Depth > 2.96" for 50 yr event

Inflow = 6.85 cfs @ 12.11 hrs, Volume= 0.606 af

Outflow = 6.85 cfs @ 12.11 hrs, Volume= 0.606 af, Atten= 0%, Lag= 0.0 min

Primary = 6.85 cfs @ 12.11 hrs, Volume= 0.606 af

Routed to Pond 22P: Pocket Pond 22P

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Peak Elev= 471.75' @ 12.13 hrs Surf.Area= 570 sf Storage= 0 cf

Flood Elev= 472.00' Surf.Area= 650 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Inve	ert Avail.	Storage	Storage Description	n	
#1	469.0	0'	0 cf	Custom Stage Da 792 cf Overall x 0.		l below (Recalc)
Elevati		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
469. 470. 471. 472.	00 00	3 135 363 650	16.6 65.6 86.1 105.0	0 53 240 500	0 53 292 792	3 326 585 888
Device	Routing	Inv	ert Outle	et Devices		
#1	Primary	471.	Head 2.50 Coet	3.00 3.50 4.00 4	0.60 0.80 1.00 1.: .50 5.00 5.50 54 2.69 2.68 2.67	20 1.40 1.60 1.80 2.00 2.67 2.65 2.66 2.66

Primary OutFlow Max=6.84 cfs @ 12.11 hrs HW=471.74' TW=471.02' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir(Weir Controls 6.84 cfs @ 2.31 fps)

Storage (cubic-feet)

0

0

0

0

0

0

0

0

0

HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 23P: Sediment Forebay 23P

Surface

(sq-ft)

525

540

555

570

586

602

618

634

650

Elevation

(feet)

471.60

471.65

471.70

471.75

471.80

471.85

471.90

471.95

472.00

	9-	
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
469.00	3	0
469.05	5	0
469.10	7	0
469.15	10	0
469.20	14	0
469.25	18	0
469.30	22	0
469.35	27	0
469.40	32	0
469.45	38	0
469.50	45 51	0
469.55 469.60	51 59	0 0
469.65	67	ő
469.70	75	ő
469.75	84	ő
469.80	93	ŏ
469.85	103	ŏ
469.90	113	0
469.95	124	0
470.00	135	0
470.05	144	0
470.10	153	0
470.15	162	0
470.20 470.25	172	0
470.25 470.30	182 192	0 0
470.35	202	ő
470.40	213	ő
470.45	224	ő
470.50	235	ō
470.55	247	0
470.60	259	0
470.65	271	0
470.70	283	0
470.75	296	0
470.80	309	0
470.85	322	0
470.90	335	0
470.95	349	0
471.00 471.05	363 375	0
471.05 471.10	375 388	0
471.15	401	ő
471.20	414	ŏ
471.25	427	ő
471.30	440	ŏ
471.35	454	ŏ
471.40	468	0
471.45	482	0
471.50	496	0
471.55	511	0
		I

STORMWATER POND DESIGN CRITERIA Env-Wq 1508.03

Type/Node Name: Pocket Pond 41P

Enter the type of stormwater pond (e.g., Wet Pond) and the node name in the drainage analysis, if applicable.

4.00			
1.68		A = Area draining to the practice	
0.14	+ market (2 by American and American	A _I = Impervious area draining to the practice	
The second secon	decimal	I = Percent impervious area draining to the practice, in decimal form	
TO SHARE AND ADDRESS OF THE STATE OF	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.21	ac-in	WQV= 1" x Rv x A	
775	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
77	cf	10% x WQV (check calc for sediment forebay and micropool volume)	
387	CHARLES SERVICE STREET	50% x WQV (check calc for extended detention volume)	
245	cf	V _{SED} = Sediment forebay volume	≥ 10%WQV
E E22	_£	V_{PP} = Permanent pool volume (volume below the lowest invert of the out	utlet structure) Attach
5,532	СТ	stage-storage table.	
no	cf	Extended Detention? ¹	≤ 50% WQV
-		V_{ED} = Volume of extended detention (if "yes" is given in box above)	
		E _{ED} = Elevation of WQV if "yes" is given in box above ⁴	
5	cfs	$2Q_{avg} = 2*V_{ED} / 24$ hrs * (1hr / 3600 sec) (used to check against Q_{EDmax} b	elow)
	cfs	Q_{EDmax} = Discharge at the E_{ED} (attach stage-discharge table)	< 2Q _{avg}
	hours	T_{ED} = Drawdown time of extended detention = $2V_{ED}/Q_{EDmax}$	≥ 24-nrs
3.00	:1	Pond side slopes	≥3:1
437.00	ft	Elevation of seasonal high water table	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
440.10	ft	Elevation of lowest pond outlet	
432.00	ft	Max floor = Maximum elevation of pond bottom (ft)	
429.00	ft	Minimum floor (to maintain depth at less than 8')	< 8 ft
434.00	ft	Elevation of pond floor ³	Max floor and > Min floor
51.00	ft	Length of the flow path between the inlet and outlet at mid-depth	
67.00 1	ft	Average width ([average of the top width + average bottom width]/2)	
0.76	:1	Length to average width ratio	≥ 3:1
Yes	Yes/No	Is the perimeter curvilinear.	← Yes
Yes	Yes/No	Are the inlet and outlet located as far apart as possible.	← Yes
No '	Yes/No	Is there a manually-controlled drain to dewater the pond over a 24hr pe	eriod?
If no	state why:		
_ =		What mechanism is proposed to prevent the outlet structure from clogg	ging (applicable for
		orifices/weirs with a dimension of <6")?	
441.67	ft	Peak elevation of the 50-year storm event	
442.00 1	ft	Berm elevation of the pond	
YES		50 peak elevation \leq the berm elevation?	←yes

^{1.} If the entire WQV is stored in the perm. pool, there is no extended det., and the following five lines do not apply.

3. If the pond floor elevation is above the max floor elev., a hydrologic budget must be s depth of 3 feet can be maintained. (First check whether a revised "lowest pond outlet" e	
Designer's Notes:	
NHDES Alteration of Terrain	Last Revised: December 2017

2. This is the elevation of WQV if the hydrologic analysis is set up to include the permanent pool storage in the node description.

Summary for Pond 41P: Pocket Pond 41P

Inflow Area = 1.631 ac, 10.12% Impervious, Inflow Depth > 1.96" for 50 yr event

Inflow 2.91 cfs @ 12.11 hrs, Volume= 0.266 af

1.08 cfs @ 12.48 hrs, Volume= Outflow 0.251 af, Atten= 63%, Lag= 22.2 min

1.08 cfs @ 12.48 hrs, Volume= 0.251 af Primary =

Routed to Pond 40P: Existing CB

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Starting Elev= 440.10' Surf.Area= 2,197 sf Storage= 5,532 cf

Peak Elev= 441.67 @ 12.48 hrs Surf.Area= 3,100 sf Storage= 9,719 cf (4,188 cf above start)

Flood Elev= 442.00' Surf.Area= 3,207 sf Storage= 10,747 cf (5,215 cf above start)

Plug-Flow detention time=462.0 min calculated for 0.124 af (47% of inflow)

Center-of-Mass det. time= 139.1 min (966.3 - 827.3)

Volume	Inver	t Avai	il.Storage	Storage Descripti	on		
#1	434.00)'	10,747 cf	Custom Stage D	ata (Irregular)Liste	ed below (Recalc)	
Elevatio (feet		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
434.0	0	64	44.5	0	0	64	
436.0	0	472	91.7	473	473	593	
438.0	0	1,164	139.2	1,585	2,058	1,496	
440.0	0	2,142	186.2	3,257	5,315	2,756	
441.5	0	3,044	214.5	3,870	9,184	3,707	
442.0	0	3,207	219.2	1,563	10,747	3,902	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	437	'.00' 18.0	" Round HDPE C	ulvert		
	39//		L= 2	4.0' CPP, square	edge headwall, Ke	e= 0.500	
			Inlet	/ Outlet Invert= 43	7.00' / 435.00' S=	0.0833 '/' Cc= 0.900	
			n= 0	.013 Corrugated F	E, smooth interior	, Flow Area= 1.77 sf	
#2	Device 1	440	.10' 3.0"	Vert. 3" Orifice	C= 0.600 Limited	to weir flow at low heads	
#3	Device 1	441	.60' 2.0"	x 2.0" Horiz. Grat	te X 10.00 column	s	
			X 10	rows C= 0.600 in	36.0" x 36.0" Grate	e (31% open area)	
			Limit	ted to weir flow at I	ow heads		

Primary OutFlow Max=1.07 cfs @ 12.48 hrs HW=441.67' TW=0.00' (Dynamic Tailwater)

-1=HDPE Culvert (Passes 1.07 cfs of 16.85 cfs potential flow)

-2=3" Orifice (Orifice Controls 0.28 cfs @ 5.80 fps)

-3=Grate (Weir Controls 0.79 cfs @ 0.89 fps)

Stage-Area-Storage for Pond 41P: Pocket Pond 41P

			10=1/2		
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
434.00	64	0	439.20	1,715	3,775
434.10	75	7	439.30	1,766	3,949
434.20	88	15	439.40	1,818	4,128
434.30	101	25	439.50	1,870	4,313
434.40	115	35	439.60	1,923	4,502
434.50	131	48	439.70	1,976	4,697
434.60	147	62	439.80	2,031	4,897
434.70	164	77	439.90	2,086	5,103
434.80	182	94	440.00	2,142	5,315
434.90	201	114	440.10	2,197	5,532
435.00	221	135	440.20	2,253	5,754
435.10	242	158	440.30	2,310	5,982
435.20	264	183	440.40	2,367	6,216
435.30	286	210	440.50	2,425	6,456
435.40	310	240	440.60	2,484	6,701
435.50	335	273	440.70	2,543	6,953
435.60	360	307	440.80	2,603	7,210
435.70	387	345	440.90	2,664	7,473
435.80	414	385	441.00	2,726	7,743
435.90	443	427	441.10	2,788	8,018
436.00	472	473	441.20	2,851	8,300
436.10	499	522	441.30	2,915	8,589
436.20	527	573	441.40	2,979	8,883
436.30	556	627	441.50	3,044	9,184
436.40	586	684	441.60	3,076	9,490
436.50	616	744	441.70	3,109	9,800
436.60	647	808	441.80	3,141	10,112
436.70	679	874	441.90	3,174	10,428
436.80	712	944	442.00		
436.90	745		442.00	3,207	10,747
437.00	780	1,016			
		1,093			
437.10	815	1,172			
437.20	850	1,256			
437.30	887	1,342			
437.40	924	1,433			
437.50	962	1,527			
437.60	1,001	1,625			
437.70	1,041	1,727			
437.80	1,081	1,834			
437.90	1,122	1,944			
438.00	1,164	2,058			
438.10	1,206	2,177			
438.20	1,248	2,299			
438.30	1,292	2,426			
438.40	1,336	2,558			
438.50	1,381	2,693			
438.60	1,426	2,834			
438.70	1,473	2,979			
438.80	1,520	3,128			
438.90	1,567	3,283			
439.00	1,616	3,442			
439.10	1,665	3,606			

Post

Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

Summary for Pond 415P: Sediment Forebay 415P

Inflow Area =

0.974 ac, 15.98% Impervious, Inflow Depth > 2.29" for 50 yr event

Inflow =

2.01 cfs @ 12.11 hrs, Volume=

0.186 af

Outflow =

2.01 cfs @ 12.11 hrs, Volume=

0.186 af, Atten= 0%, Lag= 0.0 min

Primary =

2.01 cfs @ 12.11 hrs, Volume=

0.186 af

Routed to Pond 41P: Pocket Pond 41P

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Peak Elev= 441.84' @ 12.11 hrs Surf.Area= 407 sf Storage= 0 cf

Flood Elev= 442.00' Surf.Area= 454 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Inv	ert Avail.	Avail.Storage Storage Description										
#1	439.	439.50' 0 cf Custom Stage Data (Irregular)Listed below (Recalc) 435 cf Overall x 0.0% Voids											
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)							
439.5	50	7	13.1	0	0	7							
441.5	50	313	89.1	245	633								
442.0	00	454	98.5	191	435	781							
Device	Routing	Inv	ert Outle	et Devices	# H								
#1	Primary	441.	50' 4.0' l	ong x 4.0' breadth	Broad-Crested R	ectangular Weir							
	1.70		Head	(feet) 0.20 0.40 (0.60 0.80 1.00 1.2	0 1.40 1.60 1.80 2.00							
			2.50	3.00 3.50 4.00 4.	50 5.00 5.50								
					54 2.69 2.68 2.67 79 2.88 3.07 3.32	2.67 2.65 2.66 2.66							

Primary OutFlow Max=2.00 cfs @ 12.11 hrs HW=441.84' TW=441.07' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir (Weir Controls 2.00 cfs @ 1.46 fps)

Stage-Area-Storage for Pond 415P: Sediment Forebay 415P

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
439.50	7	Ô
439.55 439.60	9 12	0 0
439.65	14	0
439.70	17	0
439.75 439.80	20 24	0 0
439.85	28	0
439.90	32	0
439.95 440.00	36 41	0 0
440.05	46	0
440.10	51	0
440.15 440.20	57 63	0 0
440.25	69	0
440.30	75	0
440.35 440.40	82 89	0 0
440.45	96	0
440.50	103	0
440.55 440.60	111 119	0 0
440.65	128	0
440.70	136	0
440.75 440.80	145 154	0 0
440.85	164	0
440.90	174	0
440.95 441.00	184 194	0 0
441.05	205	0
441.10	216	0
441.15 441.20	227 238	0 0
441.25	250 250	0
441.30	262	0
441.35 441.40	274 287	0 0
441.45	300	0
441.50	313	0
441.55 441.60	326 339	0 0
441.65	353	0
441.70	366	0
441.75 441.80	380 394	0 0
441.85	409	0
441.90	424	0
441.95 442.00	439 454	0
772.00	707	J

17. EXTREME PRECIPITATION TABLES

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Metadata for Point

Smoothing Ye

State New Hampshire

LocationNew Hampshire, United StatesLatitude43.255 degrees NorthLongitude71.765 degrees West

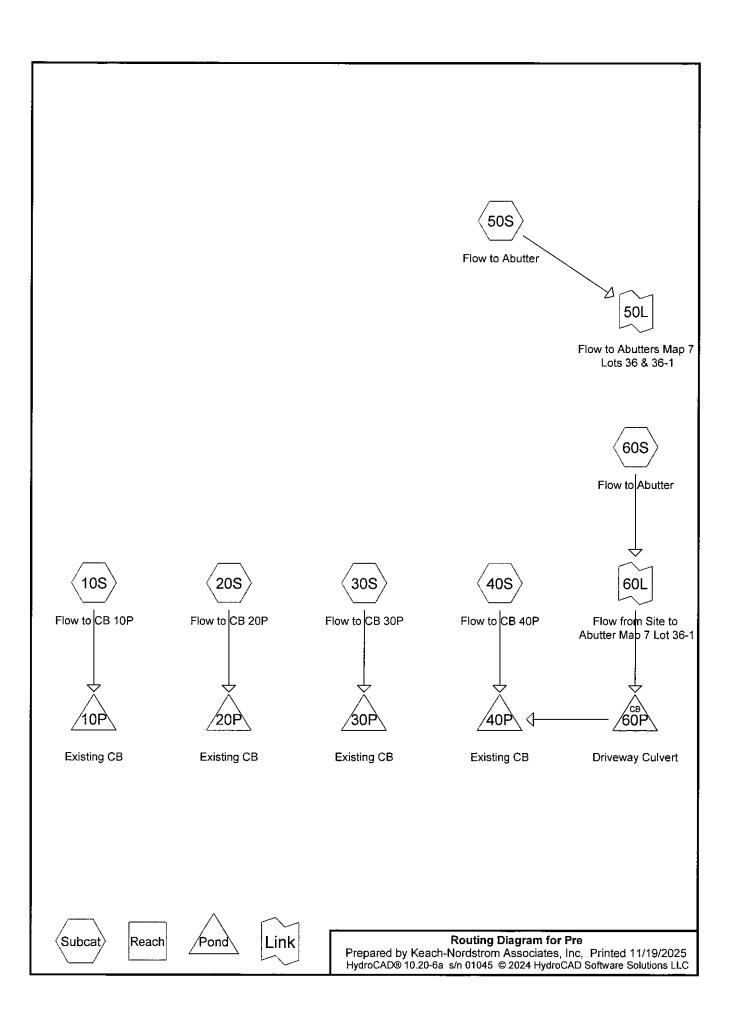
Elevation 140 feet

Date/Time Wed Jun 05 2024 12:33:03 GMT-0400 (Eastern Daylight Time)

Extreme Precipitation Estimates

	<i>-</i> .	10 .	15 .	20 :	<i>c</i> o .	120 .		41	۵.			101	241	401		4.1	2.1	4.1		10.1	
	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.50	0.65	0.81	1.02	1yr	0.70	0.97	1.18	1.48	1.87	2.35	2.55	1yr	2.08	2.45	2.90	3.60	4.12	1yr
2yr	0.31	0.48	0.60	0.79	0.99	1.25	2yr	0.86	1.14	1.44	1.80	2.23	2.78	3.11	2yr	2.46	2.99	3.48	4.16	4.75	2yr
5yr	0.37	0.58	0.72	0.97	1.24	1.57	5yr	1.07	1.44	1.81	2.26	2.79	3.44	3.93	5yr	3.04	3.78	4.38	5.15	5.84	5yr
10yr	0.42	0.66	0.83	1.13	1.47	1.87	10yr	1.27	1.72	2.17	2.69	3.31	4.04	4.70	10yr	3.58	4.52	5.21	6.05	6.83	10yr
25yr	0.49	0.79	1.00	1.38	1.83	2.35	25yr	1.58	2.16	2.73	3.38	4.14	5.01	5.94	25yr	4.43	5.71	6.56	7.50	8.40	25yr
50yr	0.56	0.90	1.15	1.61	2.17	2.80	50yr	1.87	2.58	3.25	4.03	4.90	5.89	7.11	50yr	5.22	6.83	7.81	8.82	9.82	50yr
100yr	0.64	1.03	1.33	1.89	2.58	3.34	100yr	2.22	3.07	3.89	4.80	5.81	6.94	8.50	100yr	6.14	8.17	9.31	10.38	11.49	100yr
200yr	0.73	1.20	1.55	2.22	3.06	3.98	200yr	2.64	3.67	4.63	5.70	6.88	8.17	10.17	200yr	7.23	9.78	11.09	12.22	13.45	200yr
500yr	0.88	1.45	1.88	2.73	3.83	5.01	500yr	3.30	4.64	5.84	7.17	8.61	10.16	12.90	500yr	8.99	12.41	14.00	15.18	16.57	500yr

Lower Confidence Limits


	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.24	0.37	0.45	0.61	0.75	0.88	1yr	0.64	0.86	0.95	1.28	1.57	1.90	2.28	1yr	1.68	2.19	2.58	3.07	3.62	1yr
2yr	0.30	0.46	0.57	0.77	0.95	1.13	2yr	0.82	1.10	1.29	1.71	2.21	2.69	3.00	2yr	2.38	2.88	3.35	4.02	4.60	2yr
5yr	0.34	0.52	0.65	0.89	1.13	1.33	5yr	0.97	1.30	1.50	1.96	2.54	3.17	3.59	5yr	2.81	3.45	3.98	4.74	5.42	5yr
10yr	0.38	0.58	0.72	1.01	1.30	1.52	10yr	1.12	1.48	1.68	2.17	2.82	3.60	4.10	10yr	3.19	3.95	4.52	5.36	6.09	10yr
25yr	0.43	0.65	0.81	1.16	1.53	1.78	25yr	1.32	1.74	1.96	2.48	3.23	4.25	4.89	25yr	3.76	4.70	5.35	6.33	7.11	25yr
50yr	0.47	0.72	0.89	1.29	1.73	1.99	50yr	1.49	1.95	2.18	2.76	3.57	4.83	5.57	50yr	4.28	5.36	6.07	7.19	8.03	50yr
100yr	0.52	0.79	0.99	1.42	1.95	2.24	100yr	1.68	2.19	2.43	3.07	3.96	5.50	6.37	100yr	4.87	6.12	6.89	8.18	9.07	100yr
200yr	0.57	0.86	1.09	1.57	2.20	2.52	200yr	1.90	2.46	2.71	3.42	4.39	6.28	7.27	200yr	5.55	6.99	7.83	9.33	10.24	200yr
500yr	0.65	0.97	1.25	1.81	2.58	2.92	500yr	2.23	2.85	3.13	3.95	5.03	7.48	8.67	500yr	6.62	8.34	9.25	11.12	12.05	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.29	0.45	0.55	0.73	0.90	1.11	1yr	0.78	1.09	1.21	1.59	1.96	2.61	2.80	1yr	2.31	2.69	3.21	3.94	4.48	1yr
2yr	0.33	0.51	0.63	0.85	1.05	1.24	2yr	0.91	1.21	1.41	1.85	2.37	2.89	3.25	2yr	2.56	3.12	3.64	4.31	4.99	2yr
5yr	0.41	0.63	0.78	1.07	1.36	1.63	5yr	1.18	1.59	1.85	2.36	3.00	3.73	4.32	5yr	3.30	4.16	4.81	5.55	6.30	5yr
10yr	0.49	0.76	0.94	1.31	1.69	2.02	10yr	1.46	1.98	2.27	2.86	3.60	4.53	5.38	10yr	4.01	5.18	5.97	6.70	7.57	10yr
25yr	0.63	0.96	1.19	1.70	2.24	2.69	25yr	1.93	2.63	3.01	3.66	4.58	5.85	7.18	25yr	5.18	6.90	7.94	8.61	9.69	25yr
50yr	0.76	1.15	1.43	2.06	2.77	3.36	50yr	2.39	3.28	3.70	4.43	5.51	7.09	8.95	50yr	6.28	8.61	9.86	10.42	11.67	50yr
100yr	0.92	1.39	1.74	2.51	3.44	4.19	100yr	2.97	4.10	4.57	5.34	6.63	8.62	11.17	100yr	7.63	10.74	12.25	12.60	14.06	100yr
200yr	1.11	1.67	2.11	3.06	4.27	5.23	200yr	3.68	5.12	5.66	6.46	7.96	10.44	13.93	200yr	9.24	13.39	15.23	15.22	16.93	200yr
500yr	1.44	2.14	2.75	4.00	5.68	7.03	500yr	4.90	6.87	7.50	8.30	10.19	13.50	18.67	500yr	11.95	17.96	20.33	19.55	21.65	500yr

18. HYDROCAD DRAINAGE ANALAYSIS

Printed 11/19/2025 Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
3.712	HSG A	10S, 20S, 30S, 40S, 60S
9.582	HSG B	10S, 20S, 30S, 40S, 50S, 60S
0.183	HSG C	10S, 20S
3.666	HSG D	10S, 20S, 30S, 40S, 50S, 60S
0.000	Other	

Primary=0.19 cfs 0.041 af

Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC Printed 11/19/2025 Page 5

Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points x 3
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 10S: Flow to CB 10P Runoff Area=138,949 sf 3.22% Impervious Runoff Depth>0.39" Flow Length=1,135' Tc=17.9 min CN=WQ Runoff=0.85 cfs 0.104 af Subcatchment20S: Flow to CB 20P Runoff Area=314,828 sf 3.69% Impervious Runoff Depth>0.42" Flow Length=1,000' Tc=16.1 min CN=WQ Runoff=2.01 cfs 0.255 af Subcatchment30S: Flow to CB 30P Runoff Area=85,116 sf 6.62% Impervious Runoff Depth>0.51" Flow Length=905' Tc=21.0 min CN=WQ Runoff=0.63 cfs 0.083 af Subcatchment40S: Flow to CB 40P Runoff Area=87,968 sf 5.34% Impervious Runoff Depth>0.63" Flow Length=1,073' Tc=17.4 min CN=WQ Runoff=0.86 cfs 0.106 af Subcatchment50S: Flow to Abutter Runoff Area=11,007 sf 0.00% Impervious Runoff Depth>0.27" Flow Length=213' Tc=10.6 min CN=WQ Runoff=0.04 cfs 0.006 af Subcatchment60S: Flow to Abutter Runoff Area=108,896 sf 2.23% Impervious Runoff Depth>0.20" Flow Length=1,171' Tc=18.2 min CN=WQ Runoff=0.19 cfs 0.041 af Pond 10P: Existing CB Inflow=0.85 cfs 0.104 af Primary=0.85 cfs 0.104 af Pond 20P: Existing CB Inflow=2.01 cfs 0.255 af Primary=2.01 cfs 0.255 af Pond 30P: Existing CB Inflow=0.63 cfs 0.083 af Primary=0.63 cfs 0.083 af Pond 40P: Existing CB Inflow=1.06 cfs 0.148 af Primary=1.06 cfs 0.148 af Pond 60P: Driveway Culvert Peak Elev=431.57' Inflow=0.19 cfs 0.041 af 12.0" Round Culvert n=0.013 L=39.0' S=0.0169 '/' Outflow=0.19 cfs 0.041 af Link 50L: Flow to Abutters Map 7 Lots 36 & 36-1 Inflow=0.04 cfs 0.006 af Primary=0.04 cfs 0.006 af Link 60L: Flow from Site to Abutter Map 7 Lot 36-1 Inflow=0.19 cfs 0.041 af

Printed 11/19/2025 Page 7

Primary=5.82 cfs 0.666 af

Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment10S: Flow to CB 10P Runoff Area=138,949 sf 3.22% Impervious Runoff Depth>1.64" Flow Length=1,135' Tc=17.9 min CN=WQ Runoff=4.07 cfs 0.437 af

Subcatchment 20S: Flow to CB 20P Runoff Area=314,828 sf 3.69% Impervious Runoff Depth>1.95" Flow Length=1,000' Tc=16.1 min CN=WQ Runoff=11.29 cfs 1.177 af

Runoff Area=85,116 sf 6.62% Impervious Runoff Depth>2.01" Subcatchment30S: Flow to CB 30P Flow Length=905' Tc=21.0 min CN=WQ Runoff=2.80 cfs 0.328 af

Runoff Area=87,968 sf 5.34% Impervious Runoff Depth>2.32" Subcatchment40S: Flow to CB 40P Flow Length=1,073' Tc=17.4 min CN=WQ Runoff=3.48 cfs 0.390 af

Subcatchment50S: Flow to Abutter Runoff Area=11,007 sf 0.00% Impervious Runoff Depth>1.72" Flow Length=213' Tc=10.6 min CN=WQ Runoff=0.39 cfs 0.036 af

Subcatchment60S: Flow to Abutter Runoff Area=108,896 sf 2.23% Impervious Runoff Depth>1.32" Flow Length=1,171' Tc=18.2 min CN=WQ Runoff=2.37 cfs 0.276 af

Pond 10P: Existing CB Inflow=4.07 cfs 0.437 af Primary=4.07 cfs 0.437 af

Inflow=11.29 cfs 1.177 af Pond 20P: Existing CB Primary=11.29 cfs 1.177 af

Inflow=2.80 cfs 0.328 af Pond 30P: Existing CB Primary=2.80 cfs 0.328 af

Pond 40P: Existing CB Inflow=5.82 cfs 0.666 af

Peak Elev=432.25' Inflow=2.37 cfs 0.276 af Pond 60P: Driveway Culvert

12.0" Round Culvert n=0.013 L=39.0' S=0.0169'/' Outflow=2.37 cfs 0.276 af

Link 50L: Flow to Abutters Map 7 Lots 36 & 36-1 Inflow=0.39 cfs 0.036 af

Primary=0.39 cfs 0.036 af

Inflow=2.37 cfs 0.276 af Link 60L: Flow from Site to Abutter Map 7 Lot 36-1 Primary=2.37 cfs 0.276 af

Pre

Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

Printed 11/19/2025 Page 1

Rainfall Events Listing (selected events)

Eve	nt#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
		Name				(hours)		(inches)	
	1	10 yr	Type III 24-hr		Default	24.00	1	4.04	2

Printed 11/19/2025

HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

Page 3

Summary for Subcatchment 10S: Flow to CB 10P

Runoff 1.93 cfs @ 12.26 hrs, Volume= 0.220 af, Depth> 0.83"

Routed to Pond 10P: Existing CB

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 10 yr Rainfall=4.04"

	Α	rea (sf)	CN [Description		
		3,674	98 F	aved park	ing, HSG B	3
		6,224	61 >	·75% Ġras	s cover, Go	ood, HSG B
		801	98 V	Vater Surfa	ace, HSG C	
		49,768			od, HSG A	
		39,726			od, HSG B	
_		38,756	77 V	Voods, Go	od, HSG D	
	1	38,949		Veighted A		
	134,474 96.78% Pervious Area					
	4,475 3.22% Impervious Area				ervious Area	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	9.0	100	0.2100	0.19		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.78"
	8.9	1,035	0.1500	1.94		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	17.9	1,135	Total			

Summary for Subcatchment 20S: Flow to CB 20P

4.94 cfs @ 12.24 hrs, Volume= Runoff

0.571 af, Depth> 0.95"

Routed to Pond 20P: Existing CB

Area (sf)	CN	Description
4,461	98	Paved parking, HSG B
5,323	80	>75% Grass cover, Good, HSG D
7,166	98	Water Surface, HSG C
39,209	30	Woods, Good, HSG A
179,013	55	Woods, Good, HSG B
79,656	77	Woods, Good, HSG D
314,828		Weighted Average
303,201		96.31% Pervious Area
11,627		3.69% Impervious Area

Prepared by Keach-Nordstrom Associates, Inc

Printed 11/19/2025

HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

Page 5

A	rea (sf)	CN E	Description		
·	2,433	98 F	Paved park	ing, HSG A	1
	474	98 F	^p aved park	ing, HSG [)
	1,792	98 F	Paved park	ing, HSG E	3
	9,352	39 >	75% Ġras	s cover, Go	ood, HSG A
	6,161	61 >	75% Gras	s cover, Go	ood, HSG B
	2,588	80 >	75% Gras	s cover, Go	ood, HSG D
	47,279	55 V	Voods, Go	od, HSG B	
	2,326	96 C	Gravel surfa	ace, HSG E	3
	9,098	96 C	Gravel surfa	ace, HSG A	\mathcal{A}
	6,465	77 V	<u> Voods, Go</u>	od, HSG D	
	87,968	V	Veighted A	verage	
	83,269	g	4.66% Pei	rvious Area	l
	4,699 5.34% Impervious Area				a
				_	
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.0	100	0.2100	0.19		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.78"
8.4	973	0.1500	1.94		Shallow Concentrated Flow, Shallow
					Woodland Kv= 5.0 fps
17.4	1.073	Total			

Summary for Subcatchment 50S: Flow to Abutter

Runoff = 0.13 cfs @ 12.18 hrs, Volume= 0.016 at

0.016 af, Depth> 0.74"

Routed to Link 50L: Flow to Abutters Map 7 Lots 36 & 36-1

	Α	rea (sf)	CN I	Description		
_		506	96 (Gravel surfa	ace, HSG E	3
		485	77 ١	Noods, Go	od, HSG D	
		10,016	55 <u>\</u>	Noods, Go	od, HSG B	
		11,007	1	Veighted A	verage	
		11,007	1	100.00% Pe	ervious Are	a
	Тс	Length	Slope	-	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.6	100	0.1800	0.17		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.78"
	1.0	113	0.1400	1.87		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	10.6	213	Total			

Pre

Prepared by Keach-Nordstrom Associates, Inc

Printed 11/19/2025

HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

Page 7

Summary for Pond 30P: Existing CB

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.954 ac, 6.62% Impervious, Inflow Depth > 1.03" for 10 yr event

Inflow = 1.36 cfs @ 12.31 hrs, Volume= 0.168 af

Primary = 1.36 cfs @ 12.31 hrs, Volume= 0.168 af, Atten= 0%, Lag= 0.0 min

Routed to nonexistent node 1L

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Summary for Pond 40P: Existing CB

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.519 ac, 3.62% Impervious, Inflow Depth > 0.85" for 10 yr event

Inflow = 2.46 cfs @ 12.27 hrs, Volume= 0.320 af

Primary = 2.46 cfs @ 12.27 hrs, Volume= 0.320 af, Atten= 0%, Lag= 0.0 min

Routed to nonexistent node 1L

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Summary for Pond 60P: Driveway Culvert

[57] Hint: Peaked at 431.81' (Flood elevation advised)

Inflow Area = 2.500 ac, 2.23% Impervious, Inflow Depth > 0.55" for 10 yr event

Inflow = 0.79 cfs @ 12.32 hrs, Volume= 0.115 af

Outflow = 0.79 cfs @ 12.32 hrs, Volume= 0.115 af, Atten= 0%, Lag= 0.0 min

Primary = 0.79 cfs @ 12.32 hrs, Volume= 0.115 af

Routed to Pond 40P: Existing CB

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Peak Elev= 431.81' @ 12.32 hrs

#1 Primary

431.36'

#2 Primary

431.36'

#3 Primary

431.36'

#4 Primary

431.36'

#4 Primary

431.36'

#4 Primary

431.36'

#5 Primary

431.36'

#6 Primary

#7 Round Culvert

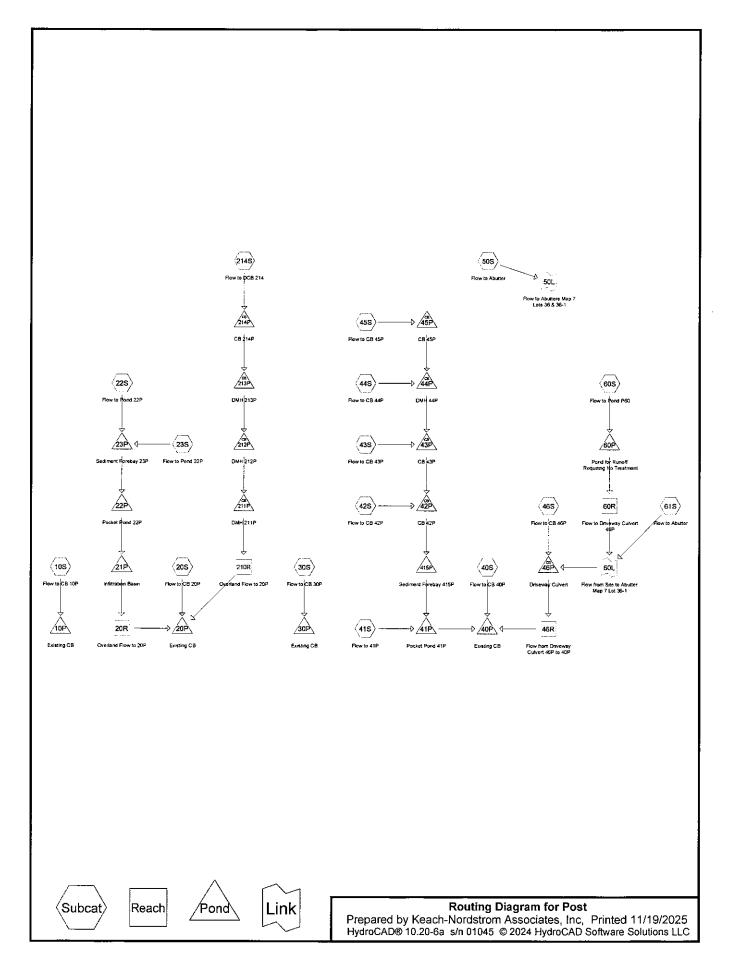
L= 39.0' RCP, square edge headwall, Ke= 0.500

#6 Inlet / Outlet Invert= 431.36' / 430.70' S= 0.0169 '/' Cc= 0.900

#7 Primary

#

Primary OutFlow Max=0.79 cfs @ 12.32 hrs HW=431.81' TW=0.00' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.79 cfs @ 2.29 fps)


Summary for Link 50L: Flow to Abutters Map 7 Lots 36 & 36-1

Inflow Area = 0.253 ac, 0.00% Impervious, Inflow Depth > 0.74" for 10 yr event

Inflow = 0.13 cfs @ 12.18 hrs, Volume= 0.016 af

Primary = 0.13 cfs @ 12.18 hrs, Volume= 0.016 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs. dt= 0.03 hrs

Printed 11/19/2025 Page 3

Soil Listing (all nodes)

	Area	Soil	Subcatchment
(a	cres)	Group	Numbers
3	3.712	HSG A	10S, 20S, 22S, 23S, 30S, 40S, 41S, 42S, 43S, 44S, 46S, 61S
9	9.582	HSG B	10\$, 20\$, 22\$, 23\$, 30\$, 41\$, 42\$, 43\$, 44\$, 45\$, 46\$, 50\$, 60\$, 61\$, 214\$
(0.183	HSG C	10S, 20S
3	3.666	HSG D	10S, 20S, 22S, 30S, 40S, 41S, 42S, 43S, 45S, 46S, 50S, 60S, 61S, 214S
(0.000	Other	

Printed 11/19/2025 Page 5

Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points x 3
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind method

Reach fouling by Dyff-Sto	r-ind method - Pond routing by Dyn-Stor-ind method
Subcatchment10S: Flow to CB 10P	Runoff Area=138,730 sf 3.23% Impervious Runoff Depth>0.39" Flow Length=1,135' Tc=17.9 min CN=WQ Runoff=0.84 cfs 0.103 af
Subcatchment20S: Flow to CB 20P	Runoff Area=102,298 sf 14.98% Impervious Runoff Depth>0.78" Flow Length=578' Tc=16.9 min CN=WQ Runoff=1.30 cfs 0.153 af
Subcatchment22S: Flow to Pond 22P	Runoff Area=75,133 sf 6.41% Impervious Runoff Depth>0.60" Flow Length=363' Tc=9.5 min CN=WQ Runoff=0.86 cfs 0.086 af
Subcatchment23S: Flow to Pond 22P	Runoff Area=31,796 sf 71.93% Impervious Runoff Depth>1.85" Flow Length=412' Tc=6.0 min CN=WQ Runoff=1.41 cfs 0.113 af
Subcatchment30S: Flow to CB 30P Flow Length=310	Runoff Area=21,407 sf 23.53% Impervious Runoff Depth>1.29" 0' Slope=0.0100 '/' Tc=17.8 min CN=WQ Runoff=0.49 cfs 0.053 af
Subcatchment40S: Flow to CB 40P	Runoff Area=6,946 sf 32.42% Impervious Runoff Depth>1.44" Flow Length=126' Tc=6.3 min CN=WQ Runoff=0.25 cfs 0.019 af
Subcatchment41S: Flow to 41P	Runoff Area=28,634 sf 1.45% Impervious Runoff Depth>0.30" Flow Length=142' Tc=6.0 min CN=WQ Runoff=0.19 cfs 0.017 af
Subcatchment42S: Flow to CB 42P	Runoff Area=6,835 sf 27.53% Impervious Runoff Depth>0.80" Flow Length=128' Tc=8.1 min CN=WQ Runoff=0.12 cfs 0.010 af
Subcatchment43S: Flow to CB 43P	Runoff Area=18,609 sf 12.79% Impervious Runoff Depth>0.52" Flow Length=358' Tc=11.6 min CN=WQ Runoff=0.16 cfs 0.018 af
Subcatchment44S: Flow to CB 44P Flow Length=	Runoff Area=2,206 sf 60.20% Impervious Runoff Depth>1.62" 54' Slope=0.1400 '/' Tc=6.0 min CN=WQ Runoff=0.08 cfs 0.007 af
Subcatchment45S: Flow to CB 45P	Runoff Area=14,764 sf 8.05% Impervious Runoff Depth>0.51" Flow Length=134' Tc=6.0 min CN=WQ Runoff=0.13 cfs 0.014 af
Subcatchment46S: Flow to CB 46P	Runoff Area=12,239 sf 23.60% Impervious Runoff Depth>0.83" Flow Length=258' Tc=10.0 min CN=WQ Runoff=0.22 cfs 0.019 af
Subcatchment50S: Flow to Abutter	Runoff Area=11,007 sf 0.00% Impervious Runoff Depth>0.27" Flow Length=213' Tc=10.6 min CN=WQ Runoff=0.04 cfs 0.006 af
Subcatchment60S: Flow to Pond P60	Runoff Area=110,256 sf 0.00% Impervious Runoff Depth>0.21" Flow Length=684' Tc=14.6 min CN=WQ Runoff=0.18 cfs 0.045 af
Subcatchment61S: Flow to Abutter	Runoff Area=81,036 sf 3.10% Impervious Runoff Depth>0.21" Flow Length=734' Tc=14.5 min CN=WQ Runoff=0.18 cfs 0.032 af
Subcatchment214S: Flow to DCB 214	Runoff Area=84,870 sf 0.00% Impervious Runoff Depth>0.43"

Flow Length=816' Tc=15.2 min CN=WQ Runoff=0.55 cfs 0.069 af

Post Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD	
	ak Elev=502.05' Storage=1,922 cf Inflow=0.18 cfs 0.045 af af Secondary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.001 af
Pond 211P: DMH 211P 18.0" Round Culvert	Peak Elev=473.56' Inflow=0.55 cfs 0.069 af n=0.013 L=128.0' S=0.0078 '/' Outflow=0.55 cfs 0.069 af
Pond 212P: DMH 212P 18.0" Round Culve	Peak Elev=479.57' Inflow=0.55 cfs 0.069 af rt n=0.013 L=43.0' S=0.0988'/' Outflow=0.55 cfs 0.069 af
Pond 213P: DMH 213P 18.0" Round Culve	Peak Elev=488.37' Inflow=0.55 cfs 0.069 af rt n=0.013 L=38.0' S=0.1066 '/' Outflow=0.55 cfs 0.069 af
Pond 214P: CB 214P 18.0" Round Culve	Peak Elev=497.82' Inflow=0.55 cfs 0.069 af rt n=0.013 L=45.0' S=0.0989 '/' Outflow=0.55 cfs 0.069 af
Pond 415P: Sediment Forebay 415P	Peak Elev=441.64' Storage=0 cf Inflow=0.47 cfs 0.050 af

 Link 50L: Flow to Abutters Map 7 Lots 36 & 36-1
 Inflow=0.04 cfs 0.006 af Primary=0.04 cfs 0.006 af

Outflow=0.47 cfs 0.050 af

Link 60L: Flow from Site to Abutter Map 7 Lot 36-1 Inflow=0.18 cfs 0.032 af Primary=0.18 cfs 0.032 af

	5 <i>yr Rainfall=5.01"</i> Printed 11/19/2025 Page 9
Reach 20R: Overland Flow to 20P Avg. Flow Depth=0.11' Max Vel=6.10 fps Inflow n=0.013 L=244.0' S=0.0922 '/' Capacity=1,102.26 cfs Outflow	
Reach 46R: Flow from Driveway Culvert Avg. Flow Depth=0.85' Max Vel=0.52 fps Inflow n=0.150 L=50.0' S=0.0074 '/' Capacity=12.13 cfs Outflow	
Reach 60R: Flow to Driveway Culvert Avg. Flow Depth=0.08' Max Vel=2.32 fps Inflow n=0.035 L=467.0' S=0.1499 '/' Capacity=166.52 cfs Outflow	
Reach 210R: Overland Flow to 20P Avg. Flow Depth=0.12' Max Vel=6.29 fps Inflow n=0.013 L=486.0' S=0.0874 '/' Capacity=1,073.41 cfs Outflow	
	w=2.99 cfs 0.325 af y=2.99 cfs 0.325 af
· · · · · · · · · · · · · · · · · · ·	w=8.07 cfs 0.924 af y=8.07 cfs 0.924 af
Pond 21P: Infiltration BasinPeak Elev=469.79' Storage=3,449 cf InflowDiscarded=0.13 cfs 0.148 af Primary=2.02 cfs 0.250 af Secondary=0.07 cfs 0.002 af Outflow	
Pond 22P: Pocket Pond 22P Peak Elev=471.24' Storage=8,604 cf Inflow Primary=2.22 cfs 0.469 af Secondary=0.00 cfs 0.000 af Outflow	
Pond 23P: Sediment Forebay 23P Peak Elev=471.63' Storage=0 cf Inflow Outflow	v=5.40 cfs 0.479 af v=5.40 cfs 0.479 af
	v=1.19 cfs 0.125 af y=1.19 cfs 0.125 af
5	v=2.10 cfs 0.605 af y=2.10 cfs 0.605 af
Pond 41P: Pocket Pond 41P Peak Elev=441.46' Storage=9,061 cf Inflow Outflow	v=2.17 cfs 0.199 af v=0.26 cfs 0.189 af
Pond 42P: CB 42P Peak Elev=443.88' Inflow 18.0" Round Culvert n=0.013 L=17.0' S=0.0782 '/' Outflow	
Pond 43P: CB 43P Peak Elev=446.16' Inflow 18.0" Round Culvert n=0.013 L=38.0' S=0.0526 '/' Outflow	
Pond 44P: DMH 44P Peak Elev=453.42' Inflow	v=0.79 cfs 0.063 af

Pond 45P: CB 45P

Peak Elev=466.17' Inflow=0.62 cfs 0.049 af 15.0" Round Culvert n=0.013 L=64.0' S=0.1219 '/' Outflow=0.62 cfs 0.049 af

15.0" Round Culvert n=0.013 L=79.0' S=0.0886 '/' Outflow=0.79 cfs 0.063 af

Pond 46P: Driveway Culvert Peak Elev=431.77' Inflow=1.58 cfs 0.373 af 12.0" Round Culvert n=0.013 L=31.0' S=0.0161 '/' Outflow=1.58 cfs 0.373 af

Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC Printed 11/19/2025 Page 11

Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points x 3
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Runoff Area=138,730 sf 3.23% Impervious Runoff Depth>1.64" Subcatchment10S: Flow to CB 10P Flow Length=1,135' Tc=17.9 min CN=WQ Runoff=4.05 cfs 0.435 af Subcatchment 20S: Flow to CB 20P Runoff Area=102,298 sf 14.98% Impervious Runoff Depth>2.73" Flow Length=578' Tc=16.9 min CN=WQ Runoff=5.06 cfs 0.535 af Subcatchment22S: Flow to Pond 22P Runoff Area=75,133 sf 6.41% Impervious Runoff Depth>2.40" Flow Length=363' Tc=9.5 min CN=WQ Runoff=4.02 cfs 0.345 af Runoff Area=31,796 sf 71.93% Impervious Runoff Depth>4.28" Subcatchment 23S: Flow to Pond 22P Flow Length=412' Tc=6.0 min CN=WQ Runoff=3.12 cfs 0.261 af Subcatchment30S: Flow to CB 30P Runoff Area=21,407 sf 23.53% Impervious Runoff Depth>3.80" Flow Length=310' Slope=0.0100 '/' Tc=17.8 min CN=WQ Runoff=1.48 cfs 0.156 af Subcatchment40S: Flow to CB 40P Runoff Area=6,946 sf 32.42% Impervious Runoff Depth>3.97" Flow Length=126' Tc=6.3 min CN=WQ Runoff=0.68 cfs 0.053 af Subcatchment41S: Flow to 41P Runoff Area=28,634 sf 1.45% Impervious Runoff Depth>1.46" Flow Length=142' Tc=6.0 min CN=WQ Runoff=0.92 cfs 0.080 af Subcatchment42S: Flow to CB 42P Runoff Area=6,835 sf 27.53% Impervious Runoff Depth>2.26" Flow Length=128' Tc=8.1 min CN=WQ Runoff=0.31 cfs 0.030 af Runoff Area=18,609 sf 12.79% Impervious Runoff Depth>2.07" Subcatchment43S: Flow to CB 43P Flow Length=358' Tc=11.6 min CN=WQ Runoff=0.75 cfs 0.074 af Runoff Area=2,206 sf 60.20% Impervious Runoff Depth>4.03" Subcatchment44S: Flow to CB 44P Flow Length=54' Slope=0.1400'/' Tc=6.0 min CN=WQ Runoff=0.21 cfs 0.017 af Subcatchment45S: Flow to CB 45P Runoff Area=14,764 sf 8.05% Impervious Runoff Depth>2.32" Flow Length=134' Tc=6.0 min CN=WQ Runoff=0.86 cfs 0.066 af Subcatchment46S: Flow to CB 46P Runoff Area=12,239 sf 23.60% Impervious Runoff Depth>2.32" Flow Length=258' Tc=10.0 min CN=WQ Runoff=0.56 cfs 0.054 af Subcatchment50S: Flow to Abutter Runoff Area=11,007 sf 0.00% Impervious Runoff Depth>1.72" Flow Length=213' Tc=10.6 min CN=WQ Runoff=0.39 cfs 0.036 af Subcatchment60S: Flow to Pond P60 Runoff Area=110,256 sf 0.00% Impervious Runoff Depth>1.63" Flow Length=684' Tc=14.6 min CN=WQ Runoff=3.33 cfs 0.345 af Subcatchment61S: Flow to Abutter Runoff Area=81,036 sf 3.10% Impervious Runoff Depth>1.26" Flow Length=734' Tc=14.5 min CN=WQ Runoff=1.82 cfs 0.196 af Subcatchment214S: Flow to DCB 214 Runoff Area=84,870 sf 0.00% Impervious Runoff Depth>2.16"

Flow Length=816' Tc=15.2 min CN=WQ Runoff=3.51 cfs 0.351 af

P	^	•	f
_	u		•

Type III 24-hr 50 yr Rainfall=5.89"

Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC Printed 11/19/2025

Page 13

Pond 60P: Pond for Runoff Requiring No Peak Elev=503.43' Storage=4,498 cf Inflow=3.33 cfs 0.345 af Primary=1.40 cfs 0.298 af Secondary=0.00 cfs 0.000 af Outflow=1.40 cfs 0.298 af

Pond 211P: DMH 211P Peak Elev=473.88' Inflow=3.51 cfs 0.351 af

18.0" Round Culvert n=0.013 L=128.0' S=0.0078 '/' Outflow=3.53 cfs 0.351 af

Pond 212P: DMH 212P Peak Elev=480.14' Inflow=3.51 cfs 0.351 af

18.0" Round Culvert n=0.013 L=43.0' S=0.0988 '/' Outflow=3.51 cfs 0.351 af

Pond 213P: DMH 213P Peak Elev=488.94' Inflow=3.51 cfs 0.351 af

18.0" Round Culvert n=0.013 L=38.0' S=0.1066 '/' Outflow=3.51 cfs 0.351 af

Pond 214P: CB 214P Peak Elev=498.39' Inflow=3.51 cfs 0.351 af

18.0" Round Culvert n=0.013 L=45.0' S=0.0989'/' Outflow=3.51 cfs 0.351 af

Pond 415P: Sediment Forebay 415P Peak Elev=441.84' Storage=0 cf Inflow=2.01 cfs 0.186 af

Outflow=2.01 cfs 0.186 af

Link 50L: Flow to Abutters Map 7 Lots 36 & 36-1 Inflow=0.39 cfs 0.036 af

Primary=0.39 cfs 0.036 af

Link 60L: Flow from Site to Abutter Map 7 Lot 36-1 Inflow=2.26 cfs 0.493 af

Primary=2.26 cfs 0.493 af

Post

Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

Printed 11/19/2025 Page 1

Rainfall Events Listing (selected events)

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)		Depth (inches)	AMC
1	10 yr	Type III 24-hr		Default	24.00	1	4.04	2

Post Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions L	Type III 24-hr 10 yr Rainfall=4.04" Printed 11/19/2025 LC Page 3
Reach 20R: Overland Flow to 20P Avg. Flow Depth=0.09' Max n=0.013 L=244.0' S=0.0922 '/' Capacity=	x Vel=5.19 fps !nflow=1.23 cfs 0.141 af 1,102.26 cfs Outflow=1.23 cfs 0.141 af
Reach 46R: Flow from Driveway Culvert Avg. Flow Depth=0.67' Max n=0.150 L=50.0' S=0.0074 '/' Capacit	x Vel=0.45 fps Inflow=0.91 cfs 0.210 af ty=12.13 cfs Outflow=0.90 cfs 0.209 af
Reach 60R: Flow to Driveway Culvert Avg. Flow Depth=0.05' Max n=0.035 L=467.0' S=0.1499 '/' Capacity	x Vel=1.69 fps Inflow=0.25 cfs 0.095 af r=166.52 cfs Outflow=0.25 cfs 0.094 af
Reach 210R: Overland Flow to 20P Avg. Flow Depth=0.09' Max n=0.013 L=486.0' S=0.0874 '/' Capacity=	x Vel=5.38 fps Inflow=1.50 cfs 0.166 af 1,073.41 cfs Outflow=1.48 cfs 0.166 af
Pond 10P: Existing CB	Inflow=1.93 cfs 0.219 af Primary=1.93 cfs 0.219 af
Pond 20P: Existing CB	Inflow=4.20 cfs 0.598 af Primary=4.20 cfs 0.598 af
Pond 21P: Infiltration BasinPeak Elev=469.75' StoDiscarded=0.13 cfs 0.140 af Primary=1.23 cfs 0.141 af Secondary=0.00 c	rage=3,377 cf Inflow=1.43 cfs 0.343 af cfs 0.000 af Outflow=1.36 cfs 0.281 af
Pond 22P: Pocket Pond 22P Peak Elev=470.82' Stormary=1.43 cfs 0.343 af Secondary=0.00 c	rage=7,289 cf Inflow=3.89 cfs 0.348 af cfs 0.000 af Outflow=1.43 cfs 0.343 af
Pond 23P: Sediment Forebay 23P Peak Elev=471.52	Storage=0 cf Inflow=3.89 cfs 0.348 af Outflow=3.89 cfs 0.348 af
Pond 30P: Existing CB	Inflow=0.87 cfs 0.092 af Primary=0.87 cfs 0.092 af
Pond 40P: Existing CB	Inflow=1.31 cfs 0.368 af Primary=1.31 cfs 0.368 af
Pond 41P: Pocket Pond 41P Peak Elev=441.02' Stor	rage=7,784 cf Inflow=1.43 cfs 0.134 af Outflow=0.21 cfs 0.127 af
Pond 42P: CB 42P Peak 18.0" Round Culvert n=0.013 L=17.0'	Elev=443.77' Inflow=0.99 cfs 0.097 af S=0.0782 '/' Outflow=0.99 cfs 0.097 af
Pond 43P: CB 43P Peak 18.0" Round Culvert n=0.013 L=38.0"	Elev=446.06' Inflow=0.80 cfs 0.080 af S=0.0526'/' Outflow=0.80 cfs 0.080 af
Pond 44P: DMH 44P Peak 15.0" Round Culvert n=0.013 L=79.0"	Elev=453.33' Inflow=0.51 cfs 0.043 af S=0.0886'/' Outflow=0.51 cfs 0.043 af
	Elev=466.08' Inflow=0.38 cfs 0.032 af

Pond 46P: Driveway Culvert

15.0" Round Culvert n=0.013 L=64.0' S=0.1219 '/' Outflow=0.38 cfs 0.032 af

12.0" Round Culvert n=0.013 L=31.0' S=0.0161 '/' Outflow=0.91 cfs 0.210 af

Peak Elev=431.54' Inflow=0.91 cfs 0.210 af

Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC Printed 11/19/2025

Page 5

Summary for Subcatchment 10S: Flow to CB 10P

Runoff = 1.93 cfs @ 12.26 hrs, Volume=

0.219 af, Depth> 0.82"

Routed to Pond 10P: Existing CB

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 10 yr Rainfall=4.04"

	Α	rea (sf)	CN [Description		
		3,674	98 F	Paved park	ing, HSG E	3
		6,224	61 >	75% Gras	s cover, Go	ood, HSG B
		801	98 V	Vater Surfa	ace, HSG C	
		49,768	30 V	Voods, Go	od, HSG A	
		39,726	55 V	Voods, Go	od, HSG B	
		38,537	77 V	<u>Voods, Go</u>	od, HSG D	
	1	38,730	V	Veighted A	verage	
	1	34,255	g	6.77% Pei	rvious Area	
		4,475	3	3.23% Impe	ervious Are	a
	_		.			
,	Тс	Length	Slope	Velocity	Capacity	Description
<u>(r</u>	min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.0	100	0.2100	0.19		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.78"
	8.9	1,035	0.1500	1.94		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
1	17.9	1,135	Total			

Summary for Subcatchment 20S: Flow to CB 20P

Runoff = 2.65 cfs @ 12.24 hrs, Volume=

0.291 af, Depth> 1.49"

Routed to Pond 20P: Existing CB

Area (sf)	CN	Description
8,155	98	Paved parking, HSG B
7,166	98	Water Surface, HSG C
7,214	39	>75% Grass cover, Good, HSG A
39,175	61	>75% Grass cover, Good, HSG B
12,295	80	>75% Grass cover, Good, HSG D
2,837	30	Woods, Good, HSG A
8,405	55	Woods, Good, HSG B
17,051	77	Woods, Good, HSG D
102,298		Weighted Average
86,977		85.02% Pervious Area
15,321		14.98% Impervious Area

Post

Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC Printed 11/19/2025

Page 7

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 10 yr Rainfall=4.04"

	Area (sf)	CN E	Description							
	6,715	39 >	39 >75% Grass cover, Good, HSG A							
	2,210	61 >	75% Gras	s cover, Go	ood, HSG B					
	1,562	98 F	Roofs, HSG	Aβ						
	3,736	98 F	Roofs, HSG	S B						
	10,663	98 F	aved park	ing, HSG A	L					
	6,910	98 F	aved park	ing, HSG B	}					
	31,796	V	Veighted A	verage	· ·					
	8,925	2	8.07% Pei	rvious Area						
	22,871	7	1.93% lmp	pervious Ar	ea					
To	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
1.7	100	0.0100	0.97		Sheet Flow,					
					Smooth surfaces n= 0.011 P2= 2.78"					
2.1	312	0.0150	2.49		Shallow Concentrated Flow,					
					Paved Kv= 20.3 fps					
3.8	412	Total, I	ncreased t	o minimum	Tc = 6.0 min					

Summary for Subcatchment 30S: Flow to CB 30P

Runoff = 0.87 cfs @ 12.24 hrs, Volume=

0.092 af, Depth> 2.25"

Routed to Pond 30P: Existing CB

<i>F</i>	rea (sf)	CN [CN Description									
	5,038	98 F	98 Paved parking, HSG A									
	214	61 >	>75% Ġras	s cover, Go	ood, HSG B							
	4,495	80 >	>75% Gras	s cover, Go	ood, HSG D							
	995	30 \	Noods, Go	od, HSG A								
	10,665	77 ١	Noods, Go	od, HSG D								
	21,407	1	Neighted A	verage								
	16,369	7	76.47% Per	rvious Area								
	5,038	2	23.53% Imp	pervious Ar	ea							
Tc	Length	Slope	Velocity	Capacity	Description							
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
11.6	50	0.0100	0.07		Sheet Flow,							
					Grass: Dense n= 0.240 P2= 2.78"							
6.2	260	0.0100	0.70		Shallow Concentrated Flow,							
					Short Grass Pasture Kv= 7.0 fps							
17.8	310	Total	•									

Printed 11/19/2025

Page 9

Summary for Subcatchment 42S: Flow to CB 42P

Runoff = 0.19 cfs @ 12.11 hrs, Volume=

0.017 af, Depth> 1.31"

Routed to Pond 42P: CB 42P

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 10 yr Rainfall=4.04"

	Α	rea (sf)	CN	Description							
		1,038	98	Paved park	ing, HSG A	1					
		844	98	Paved park	ing, HSG E	3					
		3,444	39	>75% Ġras	s cover, Go	ood, HSG A					
		1,216	61	>75% Gras	s cover, Go	ood, HSG B					
		293	80	>75% Gras	s cover, Go	ood, HSG D					
_		6,835	•	Weighted Average							
		4,953	,	72.47% Pe	rvious Area	ı					
		1,882		27.53% lm _l	pervious Ar	ea					
	Тс	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	8.0	100	0.2800	0.21		Sheet Flow,					
						Woods: Light underbrush n= 0.400 P2= 2.78"					
	0.1	28	0.1070	4.91		Shallow Concentrated Flow,					
						Grassed Waterway Kv= 15.0 fps					
	8.1	128	Total	·		· · · · · · · · · · · · · · · · · · ·					

Summary for Subcatchment 43S: Flow to CB 43P

Runoff = 0.34 cfs @ 12.17 hrs, Volume=

0.037 af, Depth> 1.04"

Routed to Pond 43P: CB 43P

Area (sf)	CN	Description
2,222	98	Paved parking, HSG A
158	98	Paved parking, HSG B
2,678	39	>75% Grass cover, Good, HSG A
1,972	61	>75% Grass cover, Good, HSG B
1,094	80	>75% Grass cover, Good, HSG D
10,023	55	Woods, Good, HSG B
462	77	Woods, Good, HSG D
18,609		Weighted Average
16,229		87.21% Pervious Area
2,380		12.79% Impervious Area

Post

Prepared by Keach-Nordstrom Associates, Inc

Printed 11/19/2025

HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

Page 11

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	<u> </u>
4.4	100	0.1800	0.38		Sheet Flow,
					Grass: Short n= 0.150 P2= 2.78"
0.2	34	0.2540	3.53		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
4.6	134	Total, I	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 46S: Flow to CB 46P

Runoff = 0.35 cfs @ 12.14 hrs, Volume=

0.032 af, Depth> 1.36"

Routed to Pond 46P: Driveway Culvert

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 10 yr Rainfall=4.04"

A	rea (sf)	CN	Description		
	2,876	98	Paved park	ing, HSG A	1
	13	98	Paved park	ing, HSG E)
	6,407	39	>75% Gras	s cover, Go	ood, HSG A
	2,290	80	>75% Gras	s cover, Go	ood, HSG D
	276	30	Woods, Go	od, HSG A	
	114	55	Woods, Go	od, HSG B	
	263	77	Woods, Go	od, HSG D	
	12,239	,	Weighted A		
	9,350	•	76.40% Pei	rvious Area	
	2,889		23.60% lmp	pervious Ar	ea
_					
Tc	Length	Slope	•	Capacity	Description
(min)	(feet)	(ft/ft)		(cfs)	
9.0	100	0.2100	0.19		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.78"
1.0	158	0.1500	2.71		Shallow Concentrated Flow, Shallow
					Short Grass Pasture Kv= 7.0 fps
10.0	258	Total			

Summary for Subcatchment 50S: Flow to Abutter

Runoff = 0.13 cfs @ 12.18 hrs, Volume= 0.016 af, Depth> 0.74" Routed to Link 50L : Flow to Abutters Map 7 Lots 36 & 36-1

Prepared by Keach-Nordstrom Associates, Inc

Printed 11/19/2025

HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

Page 13

A	rea (sf)	CN E	Description		
	20,216	30 V	Voods, Go	od, HSG A	
	2,509	98 F	Paved park	ing, HSG A	\
	3,902	39 >	75% Gras	s cover, Go	ood, HSG A
	163	80 >	75% Gras	s cover, Go	ood, HSG D
	1,773	77 V	Voods, Go	od, HSG D	
	826	85 C	Gravel road	ls, HSG B	
	50,477		,	od, HSG B	
	1,170	61 >	<u> 75% Gras</u>	s cover, Go	ood, HSG B
	81,036	V	Veighted A		
	78,527	g	6.90% Per	rvious Area	
	2,509	3	3.10% Impe	ervious Are	a
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.0	100	0.2100	0.19		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.78"
5.5	634	0.1500	1.94		Shallow Concentrated Flow, Shallow
					Woodland Kv= 5.0 fps
14.5	734	Total			

Summary for Subcatchment 214S: Flow to DCB 214

Runoff = 1.49 cfs @ 12.23 hrs, Volume=

0.166 af, Depth> 1.02"

Routed to Pond 214P : CB 214P

A	rea (sf)	CN [Description		
	4,107				ood, HSG B
	235	80 >	·75% Gras	s cover, Go	ood, HSG D
	50,341	55 V	Voods, Go	od, HSG B	
	30,187	77 V	Voods, Go	od, HSG D	
	84,870	V	Veighted A	verage	
	84,870			ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
9.0	100	0.2100	0.19		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.78"
6.2	716	0.1500	1,94		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
15.2	816	Total			

Post

Prepared by Keach-Nordstrom Associates, Inc

HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

Printed 11/19/2025 Page 15

Summary for Reach 60R: Flow to Driveway Culvert 46P

Inflow Area = 2.531 ac, 0.00% Impervious, Inflow Depth > 0.45" for 10 yr event

Inflow = 0.25 cfs @ 13.19 hrs. Volume= 0.095 af

Outflow = 0.25 cfs @ 13.27 hrs, Volume= 0.094 af, Atten= 0%, Lag= 4.4 min

Routed to Link 60L: Flow from Site to Abutter Map 7 Lot 36-1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Max. Velocity= 1.69 fps, Min. Travel Time= 4.6 min

Avg. Velocity = 1.25 fps, Avg. Travel Time= 6.2 min

Peak Storage= 68 cf @ 13.27 hrs

Average Depth at Peak Storage= 0.05', Surface Width= 4.44'

Bank-Full Depth= 1.00' Flow Area= 13.3 sf, Capacity= 166.52 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.035 Earth, dense weeds

Length= 467.0' Slope= 0.1499 '/'

Inlet Invert= 502.00', Outlet Invert= 432.00'

Summary for Reach 210R: Overland Flow to 20P

[80] Warning: Exceeded Pond 211P by 2.09' @ 0.00 hrs (9.57 cfs 1.719 af)

Inflow Area = 1.948 ac, 0.00% Impervious, Inflow Depth > 1.02" for 10 yr event

Inflow = 1.50 cfs @ 12.22 hrs, Volume= 0.166 af

Outflow = 1.48 cfs @ 12.25 hrs, Volume= 0.166 af, Atten= 1%, Lag= 1.9 min

Routed to Pond 20P: Existing CB

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Max. Velocity= 5.38 fps, Min. Travel Time= 1.5 min

Avg. Velocity = 2.40 fps, Avg. Travel Time= 3.4 min

Peak Storage= 134 cf @ 12.25 hrs

Average Depth at Peak Storage= 0.09', Surface Width= 4.35'

Defined Flood Depth= 2.25' Flow Area= 31.7 sf, Capacity= 1,360.25 cfs

Bank-Full Depth= 2.00' Flow Area= 26.7 sf, Capacity= 1,073.41 cfs

Prepared by Keach-Nordstrom Associates, Inc

Printed 11/19/2025

HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

<u>Page 17</u>

<u>Volume</u>	Invert	Avail.St	orage	Storage Description	n		
#1	466.00'	3,8	354 cf	Custom Stage Da	ta (Irregular)Listed	l below (Recalc)	
Elevation (fee		rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
466.0 468.0 470.0	00	238 887 1,983	61.0 160.0 201.0	0 1,056 2,797	0 1,056 3,854	238 1,993 3,225	
Device	Routing	Invert	t Outle	et Devices			
#1 #2	Discarded Primary	466.00 465.00	' 18.0 L= 2 Inlet		ulvert edge headwall, Ke 5.00' / 464.75' S= (•	
#3	Device 2	469.65	X 10	x 2.0" Horiz. Grate rows C= 0.600 in 3 ted to weir flow at lo	6.0" x 36.0" Grate		
#4	Secondary	469.75	' 4.0' Head 2.50 Coef	long x 6.0' breadt d (feet) 0.20 0.40 3.00 3.50 4.00 4	h Broad-Crested F 0.60 0.80 1.00 1.3 .50 5.00 5.50 51 2.70 2.68 2.68	20 1.40 1.60 1.80 2.0 2.67 2.65 2.65 2.65	

Discarded OutFlow Max=0.13 cfs @ 12.51 hrs HW=469.75' (Free Discharge)
1=Exfiltration (Exfiltration Controls 0.13 cfs)

Primary OutFlow Max=1.23 cfs @ 12.51 hrs HW=469.75' TW=453.59' (Dynamic Tailwater)

2=HDPE Culvert (Passes 1.23 cfs of 17.02 cfs potential flow)

3=Grate (Weir Controls 1.23 cfs @ 1.03 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=466.00' TW=453.50' (Dynamic Tailwater) 4=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 22P: Pocket Pond 22P

2.455 ac, 25.89% Impervious, Inflow Depth > 1.70" for 10 yr event Inflow Area = Inflow 3.89 cfs @ 12.11 hrs, Volume= 0.348 af Outflow 1.43 cfs @ 12.30 hrs, Volume= 0.343 af, Atten= 63%, Lag= 11.3 min 1.43 cfs @ 12.30 hrs. Volume= Primary = 0.343 af Routed to Pond 21P: Infiltration Basin Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Pond 21P: Infiltration Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3
Starting Elev= 469.35' Surf.Area= 1,930 sf Storage= 3,827 cf
Peak Elev= 470.82' 2 12.46 hrs Surf.Area= 2,800 sf Storage= 7,289 cf (3,462 cf above start)
Flood Elev= 472.00' Surf.Area= 5,229 sf Storage= 12,066 cf (8,239 cf above start)

Plug-Flow detention time= 203.1 min calculated for 0.255 af (73% of inflow) Center-of-Mass det. time= 38.3 min (836.7 - 798.5)

Post

Prepared by Keach-Nordstrom Associates, Inc

Printed 11/19/2025

HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

Page 19

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Peak Elev= 471.52' @ 12.11 hrs Surf.Area= 501 sf Storage= 0 cf

Flood Elev= 472.00' Surf.Area= 650 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Inv	ert Avai	l.Storage	Storage Description	on	
#1	469.	00'	0 cf	Custom Stage Da 792 cf Overall x 0		ted below (Recalc)
Elevation	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
469.0	00	3	16.6	0	0	3
470.0	00	135	65.6	53	53	326
471.0	00	363	86.1	240	292	585
472.0	00	650	105.0	500	792	888
Device	Routing	Inv	vert Outle	et Devices		
#1	Primary	471	.00' 4.0 '	long x 4.0' breadt	th Broad-Crested	d Rectangular Weir
			Head	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60 1.80 2.00
			2.50	3.00 3.50 4.00 4	1.50 5.00 5.50	
			Coef	f. (English) 2.38 2.	.54 2.69 2.68 2.	67 2.67 2.65 2.66 2.66
			2.68	2.72 2.73 2.76 2	2.79 2.88 3.07 3	.32

Primary OutFlow Max=3.85 cfs @ 12.11 hrs HW=471.51' TW=470.32' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir (Weir Controls 3.85 cfs @ 1.88 fps)

Summary for Pond 30P: Existing CB

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.491 ac, 23.53% Impervious, Inflow Depth > 2.25" for 10 yr event

Inflow = 0.87 cfs @ 12.24 hrs, Volume= 0.092 af

Primary = 0.87 cfs @ 12.24 hrs, Volume= 0.092 af, Atten= 0%, Lag= 0.0 min

Routed to nonexistent node 1L

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Summary for Pond 40P: Existing CB

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 6.463 ac, 5.27% Impervious, Inflow Depth > 0.68" for 10 yr event

Inflow = 1.31 cfs @ 12.20 hrs, Volume= 0.368 af

Primary = 1.31 cfs @ 12.20 hrs, Volume= 0.368 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Type III 24-hr 10 yr Rainfall=4.04"

Post

Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC Printed 11/19/2025

Page 21

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Peak Elev= 443.77' @ 12.12 hrs

Flood Elev= 447.18'

Device Routing Invert Outlet Devices

#1 Primary

443.33'

18.0" Round Culvert

L= 17.0' RCP, square edge headwall, Ke= 0.500
Inlet / Outlet Invert= 443.33' / 442.00' S= 0.0782 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=0.99 cfs @ 12.12 hrs HW=443.77' TW=441.72' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.99 cfs @ 2.27 fps)

Summary for Pond 43P: CB 43P

Inflow Area = 0.817 ac, 13.76% Impervious, Inflow Depth > 1.17" for 10 yr event

Inflow = 0.80 cfs @ 12.12 hrs, Volume= 0.080 af

Outflow = 0.80 cfs @ 12.12 hrs, Volume= 0.080 af, Atten= 0%, Lag= 0.0 min

Primary = 0.80 cfs @ 12.12 hrs, Volume= 0.080 af

Routed to Pond 42P: CB 42P

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Peak Elev= 446.06' @ 12.12 hrs

Flood Elev= 449.41'

Device Routing Invert Outlet Devices

#1 Primary

445.66' 18.0" Round Culvert

L= 38.0' RCP, square edge headwall, Ke= 0.500
Inlet / Outlet Invert= 445.66' / 443.66' S= 0.0526 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=0.80 cfs @ 12.12 hrs HW=446.06' TW=443.77' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.80 cfs @ 2.14 fps)

Summary for Pond 44P: DMH 44P

Inflow Area = 0.390 ac, 14.83% Impervious, Inflow Depth > 1.32" for 10 yr event

Inflow = 0.51 cfs @ 12.10 hrs, Volume= 0.043 af

Outflow = 0.51 cfs @ 12.10 hrs, Volume= 0.043 af, Atten= 0%, Lag= 0.0 min

Primary = 0.51 cfs @ 12.10 hrs. Volume= 0.043 af

Routed to Pond 43P: CB 43P

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Peak Elev= 453.33' @ 12.10 hrs

Flood Elev= 462.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	453.00'	15.0" Round Culvert
			L= 79.0' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 453.00' / 446.00' S= 0.0886 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Volume

Prepared by Keach-Nordstrom Associates, Inc

HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

Printed 11/19/2025 Page 23

Summary for Pond 60P: Pond for Runoff Requiring No Treatment

Inflow Area = 2.531 ac, 0.00% Impervious, Inflow Depth > 0.67" for 10 yr event

Inflow = 1.05 cfs @ 12.26 hrs, Volume= 0.140 af

Outflow = 0.25 cfs @ 13.19 hrs, Volume= 0.095 af, Atten= 76%, Lag= 56.1 min

Primary = 0.25 cfs @ 13.19 hrs, Volume= 0.095 af

Routed to Reach 60R: Flow to Driveway Culvert 46P

Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routed to Reach 60R: Flow to Driveway Culvert 46P

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Peak Elev= 502.26' @ 13.19 hrs Surf.Area= 1,584 sf Storage= 2,242 cf

Flood Elev= 504.00' Surf.Area= 2,640 sf Storage= 5,886 cf

Plug-Flow detention time= 208.7 min calculated for 0.095 af (67% of inflow)

Avail Storage Storage Description

Center-of-Mass det. time= 93.2 min (995.5 - 902.3)

Invert

volunie	111A ÉL F	Avail.St	orage	Storage Description	911	
#1	500.00'	5,8	886 cf	Custom Stage Da	ı ta (Irregular) Listed	below (Recalc)
Elevation (fee			Perim.	Inc.Store (cubic-feet)	Cum.Store	Wet.Area
		(sq-ft)	(feet)		(cubic-feet)	(sq-ft)
500.0		488	141.6	0	0	488
502.0		1,451	179.3	1,854	1,854	1,503
504.0	00	2,640	217.0	4,032	5,886	2,756
<u>Device</u>	Routing	Inver	t Outle	et Devices		
#1	Primary	501.00	12.0	" Round Culvert		
	•		L= 4	4.0' RCP, square	edge headwall, Ke=	= 0.500
						.0227 '/' Cc= 0.900
					E, smooth interior,	
#2	Device 1	502.00			ces X 2.00 C= 0.60	
TF.Z.	DCVICC I	302.00		ted to weir flow at lo		
#3	Device 1	503.00		W x 6.0" H Vert. 6		
,, 0	Borice i	000.00		ted to weir flow at lo		
#4	Device 1	503.50			X 10.00 columns	
"	2011001	000.00			6.0" x 36.0" Grate (31% open area)
				ted to weir flow at lo		31 % open area)
ж е	Caasadaar	F00 7F				
#5	Secondary	503.75			h Broad-Crested R	
						20 1.40 1.60 1.80 2.00
				3.00 3.50 4.00 4		
			Coef	f. (English) 2.38 2.	54 2.69 2.68 2.67	2.67 2.65 2.66 2.66
			2.68	2.72 2.73 2.76 2	.79 2.88 3.07 3.32	2

Prepared by Keach-Nordstrom Associates, Inc.

Printed 11/19/2025

Page 25

HydroCAD® 10.20-6a s/n 01045 © 2024 HydroCAD Software Solutions LLC

Primary OutFlow Max=1.49 cfs @ 12.23 hrs HW=479.80' TW=473.64' (Dynamic Tailwater) T-1=Culvert (Inlet Controls 1.49 cfs @ 2.53 fps)

Summary for Pond 213P: DMH 213P

Inflow Area = 1.948 ac. 0.00% Impervious, Inflow Depth > 1.02" for 10 yr event

1.49 cfs @ 12.23 hrs, Volume= Inflow 0.166 af

Outflow 1.49 cfs @ 12.23 hrs, Volume= 0.166 af, Atten= 0%, Lag= 0.0 min

1.49 cfs @ 12.23 hrs, Volume= Primary 0.166 af

Routed to Pond 212P: DMH 212P

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Peak Elev= 488.60' @ 12.23 hrs

Flood Elev= 497.69'

Device Routing Invert Outlet Devices #1 Primary 488.05 18.0" Round Culvert L= 38.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 488.05' / 484.00' S= 0.1066 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=1.49 cfs @ 12.23 hrs HW=488.60' TW=479.80' (Dynamic Tailwater) 1=Culvert (Inlet Controls 1.49 cfs @ 2.53 fps)

Summary for Pond 214P: CB 214P

Inflow Area = 1.948 ac. 0.00% Impervious, Inflow Depth > 1.02" for 10 yr event

Inflow 1.49 cfs @ 12.23 hrs, Volume= 0.166 af

Outflow 1.49 cfs @ 12.23 hrs, Volume= 0.166 af, Atten= 0%, Lag= 0.0 min

1.49 cfs @ 12.23 hrs, Volume= = Primary 0.166 af

Routed to Pond 213P: DMH 213P

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3

Peak Elev= 498.05' @ 12.23 hrs

Flood Elev= 504.00'

Device Routing Invert Outlet Devices #1 Primary 497,50' 18.0" Round Culvert L= 45.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 497.50' / 493.05' S= 0.0989 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=1.49 cfs @ 12.23 hrs HW=498.05' TW=488.60' (Dynamic Tailwater) 1=Culvert (Inlet Controls 1.49 cfs @ 2.53 fps)

19. RIPRAP APRON CALCULATIONS

RIP RAP OUTLET PROTECTION APRON CALCULATIONS

Date: 11/12/2025 Jennesstown Manor 24-0307-1 Project KNA #

The purpose of this spreadsheet is to calculate the dimensions of intet/Outlet Protection apron (riprap) required during the SCS/NRCS <u>50-year</u> type III 24-hr storm event. The spillway weir(s) intet/outlet apron protection will be sized for the SCS/NRCS <u>50-year</u> type III 24-hr storm event.

peak flow in CFS diameter in feet of oullet or width of channel tail water at end of apron შგბ

Required Input:

Depending on the tail water conditions, either column 1 or column 2 is used for calculations

Column Two where Tw>1/2Da La = 3*Q/Do^3/2+7Do W1 = 3*Do W2 = 3*Do+0.4*La Column One where Tw<1/200 La = (1.8Q/Do^3/2)+7Do Width of Apron at outfall W1 = 3*Do W2 = 3*Do + La Length of Apron

If defined channel, then use channel width for W1 and W2

Rock Rip Rap Size:	Size: d50 = (0.02*Q^4/3)/(Tw*Do)											RIR	AP GRA	RIRAP GRADATION ENVELOPE	ENVELOI	Ä						
Calculation Summary Table:	nmary Table:									_	9100	-	485		450		d15	_		USE		
Input to Chart		Q-25**			Calculated	Output	W2				FROM	TO FR	FROM TO	O FROM	OT M	FROM	2	depth	Depth	Length	W	W2
Description (Optional)	ntional)	(cts)	_	Do (ft) Tw (ft)	La	W.	no channel	d50, ft	d50 in	n d50 in.	Ë	i	ē	in	Ë	.⊑	Ξ.	.⊆	. <u>É</u>	' ≠ '	ني	ŧ
41P	41P Pond Outlet	0.26	1.50	0.75	11		15	0.0	0.04	4	9	80	ر. د	4	မ	-	2	5	10	F	ъ	2
21P	Infiltration Pond Outlet	2.22	1.50	0.75	13	w	17	0.1	0.62	vs.	80	10		9 5	60	- 5	3	12.5	13	13	ĸ	11
22P	Pocket Pond Outlet	2.22	1.00	0.50	1	٣	14	1.0	1.39	9	6	12	- -	11 6	6	2	8	15	15	Ξ	3	14
211P	1 1	2.48	1.50	ш	13	5	17	0.1	0.72	3	5	9	4	5 3	5	-	2	7.5	80	13	25	1
60P	Outlet FES #60	0.69	1.00	0.75	6	ဗ	- 2	0.0	0.20	3	2	9	Ĺ	5 3	2	-	2	7.5	8	6	6	-
																					i	

* Center Apron with Headwall and Outlet Pipe (All Cases)
* Line Apron with 6.0 oz. Geotextile Fabric (All Cases)
***-C-100 Used When no Flow is Present in the Q-10

20. SWALE RIPRAP CALCULATIONS

OPEN CHANNEL FLOW DESIGN/ANALYSIS	
D ₅₀ RIPRAP SIZING-FLOW REGIME-FILTER GRADATION CHECK	
PROJECT NAME : Jennesstown Manor, Warner, NH	
PROJECT # : 23S Swale to Pond 22	
BY: JL CHECKED BY:	
DATE: 11/20/2025 STORM: 25-Yr DATE:	
B/(12. 11/20/2020 0101(III. 2011 B/(12.	
UNIFORM STEADY CHANNEL FLOW:	
PEAK DISCHARGE REQUIRED = 2.7 CFS	
CHANNEL BOTTOM WIDTH = 0.0 FT (USE 0 IF SECTION IS A "V" DITCH)	
HYDRAULIC GRADIENT = 0.01000 FT/FT	
LEFT SIDE SLOPE = 3.0 :1	
RIGHT SIDE SLOPE = 3.0 :1	
DEPTH OF FLOW = 0.320 FT	
AREA = 0.31 SQ FT	
WETTED PERIMETER = 2.02 FT	
HYDRAULIC RADIUS = 0.15 FT	
TOP WIDTH = 1.92 FT	
VELOCITY = 1.84 FT/SEC	
PEAK DISC. DETERMINED = 0.6 CFS	
PEAR DISC. DETERMINED - U.O CFS	
DIDDAD CIZING TRADEZGIDAL CECTION.	
RIPRAP SIZING, TRAPEZOIDAL SECTION:	
$D_{50} = 0.0352 FT$	
NEW "n" = 0.0238 (ADJUST DESIGN/ANALYSIS "n" ABOVE)	
[
RIPRAP SIZING, "V" DITCH:	
D ₅₀ = 0.0481 FT	
NEW "n" = 0.0230 (ADJUST DESIGN/ANALYSIS "n" ABOVE)	
FLOW REGIME:	
Nf <=0.7, SUB CRITICAL FLOW	
Nf = 0.810 Nf >0.7 BUT <1.3, CRITICAL FLOW ZONE	
· · · · · · · · · · · · · · · · · · ·	
Nf >1.3, SUPER CRITICAL FLOW	
IF Nf>=0.7 A HYDRAULIC JUMP WILL PROBABLY OCCUR, DESIGN ACCORDINGLY	
TO AVOID MOVEMENT OF PARTICLES:	
Filter fabric required beneath the rock	
The lability of all of both and the rook	
FORMULAS USED:	
UNIFORM CHANNEL FLOW, $Q = (A \times 1.486 \times R^{2/3}) \times S^{1/2} n''$	
FLOW REGIME, Nf= $(Q \times T^{(1/2)})/(A^{(3/2)} \times g^{(1/2)})$	
RIPRAP SIZING, TRAPEZDL., ((118 X Q X S^(13/6) X R/P)^(2/5)	
RIPRAP SIZING, "V", ((64.4 X Q X S^(13/6) X (Z/(Z^2 + 1))^(2/5)	
NEW RIPRAP "n", (D. OF F.^(1/6)/(21.6 X LOG(D. OF F./D50)+14)	
(1.5) (1.5) (1.5) (1.5) (1.5) (1.5) (1.5) (1.5) (1.5)	

OPEN CHA	NNEL FLOW DESIGN/ANALYSIS		
D ₅₀ RIPRAP SIZING-FL	LOW REGIME-FILTER GRADATION CHECK		
30			
PROJECT NAME : Jennesstown	Manor, Warner, NH		
PROJECT # : 22S Swale to			
BY: JL	CHECKED BY :		
DATE : 11/20/2025	STORM: 25-Yr DATE:		
UNIFORM STEADY CHANNEL FLOW			
PEAK DISCHARGE REQUIRED =	3.0 CFS		
CHANNEL BOTTOM WIDTH =	0.0 FT (USE 0 IF SECTION IS A "V" DITCH)		
HYDRAULIC GRADIENT =	0.01000 FT/FT		
LEFT SIDE SLOPE =	3.0 :1		
RIGHT SIDE SLOPE =	3.0 :1		
DEPTH OF FLOW = MANNINGS "n" =	0.150 FT		
MANNINGS N = [AREA =	0.0203 (CHECK RIPRAP SIZING "n" BELOW) 0.07 SQ FT		
WETTED PERIMETER =	0.07 SQ F1 0.95 FT		
HYDRAULIC RADIUS =	0.93 FT 0.07 FT		
TOP WIDTH =	0.90 FT		
VELOCITY =	1.26 FT/SEC		
PEAK DISC. DETERMINED =	0.1 CFS		
T EXIT DIGG: DETERMINED	<u> </u>		
RIPRAP SIZING, TRAPEZOIDAL SEC	CTION:		
D ₅₀ =	0.0165 FT		
NEW "n" =	0.0210 (ADJUST DESIGN/ANALYSIS "n" ABOVE)		
(ADJUST DESIGNAMALISIS II ADUVL)			
RIPRAP SIZING, "V" DITCH:			
D ₅₀ =	0.0225 FT		
NEW "n" =	0.0203 (ADJUST DESIGN/ANALYSIS "n" ABOVE)		
	0.0200 (AB0001 B201014) 44 A21010 11 AB042)		
FLOW REGIME:			
	Nf <=0.7, SUB CRITICAL FLOW		
Nf =	0.811 Nf >0.7 BUT <1.3, CRITICAL FLOW ZONE		
_	Nf >1.3, SUPER CRITICAL FLOW		
IF Nf>=0.7 A HYDRAULIC JUMP WI	LL PROBABLY OCCUR, DESIGN ACCORDINGLY		
TO AVOID MOVEMENT OF PARTICL	LES:		
	alle the annual control of the second of the		
Filter fabric required bene	ath the rock		
FORMULAS USED:			
	Q = (A X 1.486 X R^(2/3) X S^(1/2))/"n"		
·	$Q = (A \times 1.400 \times 10^{-100} \times 3^{-100} \times 10^{-100} \times $		
	(118 X Q X S^(13/6) X R/P)^(2/5)		
1	(64.4 X Q X S^(13/6) X (Z/(Z^2 + 1))^(2/5)		
	D. OF F.^(1/6)/(21.6 X LOG(D. OF F./D50)+14)		

OPEN CHANNEL FLOW DESIGN/ANALYSIS D₅₀ RIPRAP SIZING-FLOW REGIME-FILTER GRADATION CHECK PROJECT NAME: Jennesstown Manor, Warner, NH PROJECT #: 42S Swale to Pond 41 BY: JL CHECKED BY: DATE: 11/20/2025 STORM: 25-Yr DATE: **UNIFORM STEADY CHANNEL FLOW:** 0.3 CFS PEAK DISCHARGE REQUIRED = CHANNEL BOTTOM WIDTH = 0.0 FT (USE 0 IF SECTION IS A "V" DITCH) 0.15000 FT/FT HYDRAULIC GRADIENT = LEFT SIDE SLOPE = 3.0|:1 RIGHT SIDE SLOPE = 3.0 :1 DEPTH OF FLOW = 0.150 FT 0.0693 (CHECK RIPRAP SIZING "n" BELOW) MANNINGS "n" = 0.07 SQ FT AREA = 0.95 FT WETTED PERIMETER = 0.07 FT HYDRAULIC RADIUS = 0.90 FT TOP WIDTH = 1.43 FT/SEC VELOCITY = PEAK DISC. DETERMINED = 0.1 CFS RIPRAP SIZING, TRAPEZOIDAL SECTION: 0.1812 FT $D_{50} = |$ NEW "n" = 0.0596 (ADJUST DESIGN/ANALYSIS "n" ABOVE) **RIPRAP SIZING, "V" DITCH:** $D_{50} =$ 0.2477 FT NEW "n" = 0.0692 (ADJUST DESIGN/ANALYSIS "n" ABOVE) FLOW REGIME: Nf <=0.7. SUB CRITICAL FLOW Nf = 0.919 Nf >0.7 BUT <1.3, CRITICAL FLOW ZONE Nf >1.3, SUPER CRITICAL FLOW IF Nf>=0.7 A HYDRAULIC JUMP WILL PROBABLY OCCUR, DESIGN ACCORDINGLY TO AVOID MOVEMENT OF PARTICLES: Filter fabric required beneath the rock **FORMULAS USED:** UNIFORM CHANNEL FLOW, $Q = (A \times 1.486 \times R^{2/3}) \times S^{1/2} / "n"$ FLOW REGIME, Nf= $(Q \times T^{(1/2)})/(A^{(3/2)} \times g^{(1/2)})$ RIPRAP SIZING, TRAPEZDL., ((118 X Q X S^(13/6) X R/P)^(2/5) RIPRAP SIZING, "V", ((64.4 X Q X S^(13/6) X (Z/(Z^2 + 1))^(2/5) NEW RIPRAP "n", (D. OF F.\(^{1/6})/(21.6 X LOG(D. OF F./D50)+14)

OPEN CHANNEL FLOW DESIGN/ANALYSIS D₅₀ RIPRAP SIZING-FLOW REGIME-FILTER GRADATION CHECK PROJECT NAME: Jennesstown Manor, Warner, NH PROJECT #: 43S Swale to CB 43 BY: JL CHECKED BY: DATE: 11/20/2025 STORM: 25-Yr DATE: **UNIFORM STEADY CHANNEL FLOW:** 0.6 CFS PEAK DISCHARGE REQUIRED = CHANNEL BOTTOM WIDTH = 0.0 FT (USE 0 IF SECTION IS A "V" DITCH) 0.15000 FT/FT HYDRAULIC GRADIENT = LEFT SIDE SLOPE = 3.0|:1 RIGHT SIDE SLOPE = 3.0 :1 DEPTH OF FLOW = 0.130 FT 0.0676 (CHECK RIPRAP SIZING "n" BELOW) MANNINGS "n" = 0.05 SQ FT AREA = 0.82 FT WETTED PERIMETER = 0.06 FT HYDRAULIC RADIUS = 0.78 FT TOP WIDTH = 1.33 FT/SEC VELOCITY = PEAK DISC. DETERMINED = 0.1 CFS RIPRAP SIZING, TRAPEZOIDAL SECTION: 0.1571 FT $D_{50} = |$ NEW "n" = 0.0582 (ADJUST DESIGN/ANALYSIS "n" ABOVE) **RIPRAP SIZING, "V" DITCH:** $D_{50} =$ 0.2147 FT NEW "n" = 0.0676 (ADJUST DESIGN/ANALYSIS "n" ABOVE) FLOW REGIME: Nf <=0.7. SUB CRITICAL FLOW Nf = 0.919 Nf >0.7 BUT <1.3, CRITICAL FLOW ZONE Nf >1.3, SUPER CRITICAL FLOW IF Nf>=0.7 A HYDRAULIC JUMP WILL PROBABLY OCCUR, DESIGN ACCORDINGLY TO AVOID MOVEMENT OF PARTICLES: Filter fabric required beneath the rock **FORMULAS USED:** UNIFORM CHANNEL FLOW, $Q = (A \times 1.486 \times R^{2/3}) \times S^{1/2} / "n"$ FLOW REGIME, Nf= $(Q \times T^{(1/2)})/(A^{(3/2)} \times g^{(1/2)})$ RIPRAP SIZING, TRAPEZDL., ((118 X Q X S^(13/6) X R/P)^(2/5) RIPRAP SIZING, "V", ((64.4 X Q X S^(13/6) X (Z/(Z^2 + 1))^(2/5)

NEW RIPRAP "n", (D. OF F.\(^{1/6})/(21.6 X LOG(D. OF F./D50)+14)

OPEN CHANNEL FLOW DESIGN/ANALYSIS D₅₀ RIPRAP SIZING-FLOW REGIME-FILTER GRADATION CHECK PROJECT NAME: Jennesstown Manor, Warner, NH PROJECT #: 44S Swale to CB 44 BY: JL CHECKED BY: DATE: 11/20/2025 STORM: 25-Yr DATE: **UNIFORM STEADY CHANNEL FLOW:** 0.1 CFS PEAK DISCHARGE REQUIRED = CHANNEL BOTTOM WIDTH = 0.0 FT (USE 0 IF SECTION IS A "V" DITCH) 0.15000 FT/FT HYDRAULIC GRADIENT = LEFT SIDE SLOPE = 3.0|:1 RIGHT SIDE SLOPE = 3.0 :1 DEPTH OF FLOW = 0.164 FT 0.0703 (CHECK RIPRAP SIZING "n" BELOW) MANNINGS "n" = 0.08 SQ FT AREA = WETTED PERIMETER = 1.04 FT 0.08 FT HYDRAULIC RADIUS = 0.98 FT TOP WIDTH = 1.49 FT/SEC VELOCITY = PEAK DISC. DETERMINED = 0.1 CFS RIPRAP SIZING, TRAPEZOIDAL SECTION: 0.1981 FT $D_{50} = |$ NEW "n" = 0.0605 (ADJUST DESIGN/ANALYSIS "n" ABOVE) **RIPRAP SIZING, "V" DITCH:** $D_{50} =$ 0.2707 FT NEW "n" = 0.0703 (ADJUST DESIGN/ANALYSIS "n" ABOVE) FLOW REGIME: Nf <=0.7. SUB CRITICAL FLOW Nf = 0.919 Nf >0.7 BUT <1.3, CRITICAL FLOW ZONE Nf >1.3, SUPER CRITICAL FLOW IF Nf>=0.7 A HYDRAULIC JUMP WILL PROBABLY OCCUR, DESIGN ACCORDINGLY TO AVOID MOVEMENT OF PARTICLES: Filter fabric required beneath the rock **FORMULAS USED:** UNIFORM CHANNEL FLOW, $Q = (A \times 1.486 \times R^{2/3}) \times S^{1/2} / "n"$ FLOW REGIME, Nf= $(Q \times T^{(1/2)})/(A^{(3/2)} \times g^{(1/2)})$ RIPRAP SIZING, TRAPEZDL., ((118 X Q X S^(13/6) X R/P)^(2/5) RIPRAP SIZING, "V", ((64.4 X Q X S^(13/6) X (Z/(Z^2 + 1))^(2/5) NEW RIPRAP "n", (D. OF F.\(^{1/6})/(21.6 X LOG(D. OF F./D50)+14)

REFERENCES: KING'S HANDBOOK OF HYDRAULICS AND NCHRP-REPORT 108

OPEN CHANNEL FLOW DESIGN/ANALYSIS D₅₀ RIPRAP SIZING-FLOW REGIME-FILTER GRADATION CHECK PROJECT NAME: Jennesstown Manor, Warner, NH PROJECT #: 45S Swale to CB 45 BY: JL CHECKED BY: DATE: 11/20/2025 STORM: 25-Yr DATE: **UNIFORM STEADY CHANNEL FLOW:** 0.7 CFS PEAK DISCHARGE REQUIRED = CHANNEL BOTTOM WIDTH = 0.0 FT (USE 0 IF SECTION IS A "V" DITCH) 0.15000 FT/FT HYDRAULIC GRADIENT = LEFT SIDE SLOPE = 3.0|:1 RIGHT SIDE SLOPE = 3.0 :1 DEPTH OF FLOW = 0.140 FT 0.0685 (CHECK RIPRAP SIZING "n" BELOW) MANNINGS "n" = 0.06 SQ FT AREA = 0.89|FT WETTED PERIMETER = 0.07 FT HYDRAULIC RADIUS = 0.84 FT TOP WIDTH = 1.38 FT/SEC VELOCITY = PEAK DISC. DETERMINED = 0.1 CFS RIPRAP SIZING, TRAPEZOIDAL SECTION: 0.1692 FT $D_{50} = |$ NEW "n" = 0.0589 (ADJUST DESIGN/ANALYSIS "n" ABOVE) **RIPRAP SIZING, "V" DITCH:** $D_{50} =$ 0.2312 FT NEW "n" = 0.0685 (ADJUST DESIGN/ANALYSIS "n" ABOVE) FLOW REGIME: Nf <=0.7. SUB CRITICAL FLOW Nf = 0.919 Nf >0.7 BUT <1.3, CRITICAL FLOW ZONE Nf >1.3, SUPER CRITICAL FLOW IF Nf>=0.7 A HYDRAULIC JUMP WILL PROBABLY OCCUR, DESIGN ACCORDINGLY TO AVOID MOVEMENT OF PARTICLES: Filter fabric required beneath the rock **FORMULAS USED:** UNIFORM CHANNEL FLOW, $Q = (A \times 1.486 \times R^{2/3}) \times S^{1/2} / "n"$ FLOW REGIME, Nf= $(Q \times T^{(1/2)})/(A^{(3/2)} \times g^{(1/2)})$ RIPRAP SIZING, TRAPEZDL., ((118 X Q X S^(13/6) X R/P)^(2/5) RIPRAP SIZING, "V", ((64.4 X Q X S^(13/6) X (Z/(Z^2 + 1))^(2/5) NEW RIPRAP "n", (D. OF F.\(^{1/6})/(21.6 X LOG(D. OF F./D50)+14)

REFERENCES: KING'S HANDBOOK OF HYDRAULICS AND NCHRP-REPORT 108

21. SITE SPECIFIC SOIL SURVEY REPORT

SITE-SPECIFIC SOIL SURVEY REPORT

Route 103 Warner

1. MAPPING STANDARDS

Site-Specific Soil Mapping Standards for New Hampshire and Vermont. SSSNNE Special Publication No. 3, Version 7.0, July 2021. This map product is within the technical standards of the National Cooperative Soil Survey. It is a special product, intended for the submission to NH DES Alteration of Terrain. It was produced by a professional soil scientist and is not a product of the USDA Natural Resource Conservation Service.

Hydrologic Soil Group was determined using SSSNNE Special Publication No. 5. Scale of soil map:

Approximately 1" equals 40'

Contours:

Intervals of 2 feet

2. DATE SOIL MAP PRODUCED

Date(s) of on-site field work: 11/23/24

Date(s) of test pits: 2/3/25

Test pits recorded by: Gifford Colburn, Keach Nordstrom

3. GEOGRAPHIC LOCATION AND SIZE OF SITE

City or town where soil mapping was conducted: Warner

Location: Route 103, Map 7, Lot 39 Size of area: approximately 10 acres Was the map for the entire lot? No

The area where the map was created is for the front, 10 acres of the lot. Tis portion of the lot has been recently cleared. Several areas of open rock outcrops and steep hillsides are present as, well as low areas within the topography. The site slopes steeply from the road up to the west. Several small wetlands are present.

4. PURPOSE OF THE SOIL MAP

Was the map prepared to meet the requirement of Alteration of Terrain? Yes If no, what was the purpose of the map?

Who was the map prepared for? Keach Nordstrom.

5. SOIL IDENTIFICATION LEGEND

SSSM SYM.	SSS MAP NAME	HISS SYM.	HYDROLOGIC SOIL GRP.
55	Hermon Very Stony	121	В
442	Chichester	221	В
58	Waumbek	321	A
829	Waumbek-Hermon Association	321	В
399	Ledge Outcrop	228	D
414	Moosilauke Poorly Drained	521	C

Epsom, NH 03234

SLOPE PHASE:

0-8% B 8-15% C 15-25% D 25% + E

55 Hermon Very Stony 121 B

The Hermon series consists of very deep, somewhat excessively drained soils on upland till plains, hills and ridges. These soils formed in glacial till. Estimated saturated hydraulic conductivity is high or very high throughout the mineral soil. Slopes ranges from 0 through 60 percent. These soils are dominated by sandy loam over loamy sand and sand. Some profiles have single grain sand to gravel and some cobble. No ESHWT was encountered within 60 inches and no significant ledge was encountered. These soils are found in a few isolated areas on the site.

Typical Profile 0-10" 10YR3/2, FSL, GR, FR 10-24" 7.5YR4/6, LS, GR, FR 24-72" 10YR4/3, FSL, GR, FR 72-108" 2.5Y5/3, S, GR, FR, Redox 20% ESHWT 72 Observed Water None Refusal None

442 Chichester 221

The Chichester series consists of very deep, well drained soils that formed in a loamy mantle overlying sandy till on glaciated hills, valley sides and till plains. Saturated hydraulic conductivity is moderately high or high in the solum and high or very high in the substratum. Slope ranges from 3 through 50 percent. These soils are found within the central portion of the site. No ESHWT was encountered within 40 inches and no significant ledge was encountered. Typical Profile

0-12" 10YR3/2, FSL, GR, FR 12-16" 7.5YR4/6, LS, GR, FR 16-55" 10YR5/3, FSL, GR, FR 55-90" 10YR4/2, S, GR, FR, Redox 20% ESHWT 55 Observed Water None Refusal None

58 Waumbek 321

The Waumbek series consists of very deep, moderately well drained soils formed in stony, sandy till. They are on glaciated uplands. Permeability is moderately rapid or rapid in the solum and rapid in the substratum. These soils are found in the higher elevations on the site. They are dominated by sandy loam in the upper layers and underlain by loam y sand and sand. They have ESHWT between 15-40 inches and no significant ledge was encountered. These soils are found in the mid-slope areas of the site in the southern portion of the site.

603-583-1745 PO Box 356 Hurley Environmental & Land Planning (hurleyelp.com) Epsom, NH 03234

Typical Profile 0-10" 10YR3/2, FSL, GR, FR 10-32" 7.5YR4/6, LS, GR, FR 32-108" 10YR6/23, FSL, GR, FR, Redox 20% ESHWT 32 Observed Water None Refusal None

Waumbek-Hermon Association 321 B

The Waumbek-Hermon Association is an overlapping soil type where the two individual series cannot be separated out into sizeable individual units. This series has an ESHWT between 15-40 inches and no significant ledge.

The Waumbek series consists of very deep, moderately well drained soils formed in stony, sandy till. They are on glaciated uplands. Permeability is moderately rapid or rapid in the solum and rapid in the substratum.

The Hermon series consists of very deep, somewhat excessively drained soils on upland till plains, hills and ridges. These soils formed in glacial till. Estimated saturated hydraulic conductivity is high or very high throughout the mineral soil.

399 Ledge Outcrop 228 D

Several areas of the site have steep rock slopes of either exposed ledge or ledge very close to the surface.

414 Moosilauke Poorly Drained 521 C

The Moosilauke series consists of very deep, poorly and somewhat poorly drained soils that formed in glacial outwash or drift in low depressions and shallow drainageway on uplands. Saturated hydraulic conductivity is high in the solum and high or very high in the substratum. Slope ranges from 0 to 15 percent. These are the small isolated wetlands found on the site.

6. RESPONSIBLE SOIL SCIENTIST

Name: Luke Hurley

Certified Soil Scientist Number: CSS #095

7. OTHER DISTINGUISHING FEATURES OF SITE

Is the site in a natural condition? The current mapping portion, yes.

8. Inclusions

No Inclusions were mapped.

22. INFILTRATION FEASIBILITY REPORT

INFILTRATION FEASIBILITY REPORT

Jenesstown Manor

Map 7; Lots 39 & 39-1 Route 103 Warner, New Hampshire

March 7, 2025

KNA Project No. 24-0307-1

TABLE OF CONTENTS:

- I. Location of Infiltration Practices
- II. Existing Topography
- III. Test Pit Locations
- IV. Seasonal High Water Table Elevation Summaries
- V. Infiltration Rate Summary
- VI. Profile Descriptions

I. Location of Practice

One infiltration practice is proposed for this project. An above ground infiltration pond (21P) is proposed on Map 7 Lot 39-1, but will handle runoff from Map 7 Lot 39 as well as Map 7 lot 39-1. There will a drainage and grading easement between these two lots.

II. Existing Topography

The existing grades on the site are primarily moderately steep (15-25%) or steep slopes (25%+) that slope northeasterly to Route 103.

III. Test Pit Locations

There were nine test pits performed for the area of development. Test Pit 2 was used for the design of the infiltration pond 21P.

IV. Seasonal High Water Table Elevation Summaries

The results from the Test Pit 2 performed is as follows:

Test Pit #2

The existing elevation of the ground

in the area of the practice = 468.89 (approx. original grade)

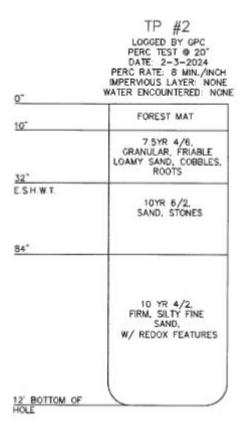
Distance to SHWT = 32" Elevation of SHWT = 464.22 Lowest Elevation of Test Pit = 456.89

Elevation of SHWT = 464.22

Required separation = 1.0 (prior treatment)

Bottom of infiltration practice = 466.00

The results from the test pit performed is as follows:


V. Infiltration Rate Summary

The infiltration rate for the Infiltration Pond 21P was calculated by the default method, as described in Env-Wq 1504.14. The practice is located in an area primarily identified in the Site-Specific Soil Survey as 58D – Waumbek. The area for the proposed infiltration system is natural undisturbed woodland, therefore the soil used to determine the infiltration was Waumbek.

The Ksat Values for New Hampshire Soils by USDA Natural for New Hampshire Soils, Society of Soil Scientists for Northern New England, Special Publication No. 5, September 2009, provides a value of the Waumbek soil type of 6.00 inches per hour. Using an applicable factor of safety of 2 at a conservative rate of 6 inches per hour, the infiltration rate utilized in the drainage analysis is 3.0 inches per hour.

VI. Profile Descriptions

Profile descriptions are provided as follows.

23. OPERATIONS AND MAINATENANCE PLAN WITH CHECKLIST

STORMWATER OPERATION & MAINTENANCE PLAN

Jennesstown Manor Route 103 Warner, New Hampshire

Map 7 / Lots 39 & 39-1

March 7, 2024

REVISED: NOVEMBER 18, 2025

TABLE OF CONTENTS:

I. General

Introduction

General Maintenance Requirements

II. Supporting Documents

Annual Inspection & Maintenance Reporting Form
Long-Term Inspection & Maintenance Plan Checklist
Long-Term Inspection & Maintenance Log
Anti-Icing Route Data Form

III. Control of Invasive Plants

Invasive Plant Guide

IV. Stormwater Practice Location Plan

11"x17" "Grading, Drainage & Utility Plan"

I. General

Introduction

The project owner or their assigned heirs will maintain the stormwater treatment facilities after construction is completed. The Applicant of the project is Peacock Hill Road, LLC located at 145 Old Town Road Weare, NH. The Applicant will maintain the stormwater system.

The subject property is referenced on Map 7; Lots 39 and 39-1 in Warner, New Hampshire. Any transfer of responsibility for inspection and maintenance activities or transfer of ownership shall be documented to Warner in writing. The contract documents will require the contractor to designate a person responsible for maintenance of the sedimentation control features during construction. Long-term operation and maintenance for the stormwater management facilities are presented below.

Maintenance will be performed as described unless and until the system is formally accepted by a municipality or quasi-municipal district or is placed under the jurisdiction of a legally created association that will be responsible for the maintenance of the system.

Post Construction:

The following standards will be met after construction is complete:

Documentation:

A maintenance log will be kept summarizing inspections, maintenance, and any corrective actions taken. The log will include the date on which each inspection or maintenance task was performed, a description of the inspection findings or maintenance completed, and the name of the inspector or maintenance personnel performing the task. If a maintenance task requires the clean out of any sediments or debris, the location where the sediment and debris was disposed after removal will be indicated. The log will be made accessible to department and/or Warner staff and a copy provided upon request.

Maintenance Requirements

Pocket Ponds:

- Systems should be inspected at least twice annually and following any rainfall event exceeding 2.5 inches in a 24-hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- System embankments should be mowed periodically to maintain grass cover and any other vegetation found on the embankment should be removed at each inspection.
- Trash and debris found within the pond or in the outlet structure should be removed at each inspection.
- Removal of accumulated sediment.
- Inspection and repair of embankments, inlet and outlet structures, and appurtenances.

Infiltration Ponds:

- Systems should be inspected at least twice annually and following any rainfall event exceeding 2.5 inches in a 24-hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- Trash and debris should be removed at each inspection.
- Inspection of pre-treatment measures at least twice annually and removal of accumulated sediment as warranted by inspection, but no less than once annually.
- At least once annually, the system should be inspected for drawdown time. If the pond does not drain within 72-hours following a rainfall event, a qualified professional should assess the condition of the facility to determine measures required to restore filtration function or infiltration function (as applicable), including but not limited to the removal of accumulated sediments or reconstruction of the basin bottom.

Catch Basins and Closed Drainage Network:

- Catch basins may require frequent maintenance. This may require several cleanings of the sumps each year. At a minimum, it is recommended that catch basins be inspected at least twice annually.
- Sediment should be removed when it approaches half of the sump depth.
- If floating hydrocarbons are observed during an inspection, the material should be removed immediately by skimming, absorbent materials, or other methos and disposed in conformance with the applicable state and federal regulations.

Outlet Protection:

• Inspect the outlet protection annually for damage and deterioration. Repair damages immediately.

General:

- If any invasive species begin to grow in the stormwater management practices the species shall be disposed of in an appropriate manner that will not allow the pest to survive or spread. The disposal of such species shall be witnessed or approved by a state inspector. Methods for disposal may include, but not be limited to:
 - Encapsulating the plant(s) in plastic bags and disposing of the plant material in one of the following ways:
 - Trash pickup;
 - Discarding;
 - Open burning;
 - Incineration; or
 - Burial of infested nursery.

II. Supporting Documents

Annual Inspection and Maintenance Reporting Form for

Jennesstown Manor Warner, New Hampshire

Date:					
To:	Peacock Hill Road, LLC				
Re:	Certification of Inspection and Maintenand	ce; Submittal of Forms			
Prope	erty Name:				
Prope	erty Address:				
Conta	act Name:				
Conta	act Phone #:				
	act Email Address:				
have assoc	I verify that the required stormwater facility inspections and required maintenance have been completed in accordance with the Operation & Maintenance Plan associated with the above referenced property. The required Long-Term Inspection & Maintenance Plan Checklist is attached to this form.				
	e of Party Responsible for Inspection intenance	Property Owner			
Autho	orized Signature	Signature			

Long-Term Inspection & Maintenance Plan Checklist Jennesstown Manor – Warner, NH

Current Owner Name:				Dat	e:		
Business Address:				Inspector:			
Weather:							
Date of Last Rainfall:	Date of Last Rainfall:			Am	ount:		Inches:
Best Management Practice							
Pocket Pond #22P			F	Reas	on for In	spe	ection
	Spring			Fa	II/Yearly		After Major Storm □
Maintenance Required? Corrective Action Needed & Notes:	Yes		Ν	lo			
Sideslopes & berms need repair? Clean inlet & outlet structures?	Yes Yes			No No			
Pocket Pond #41P			F	Reas	on for In	spe	ection
	Spring			Fa	ll/Yearly		After Major Storm □
Maintenance Required? Corrective Action Needed & Notes:	Yes		Ν	lo			
Sideslopes & berms need repair? Clean inlet & outlet structures?	Yes Yes			No No			
Infiltration Pond #21P			F	Reason for Inspection			
	Spring			Fa	II/Yearly		After Major Storm □
Maintenance Required? Corrective Action Needed & Notes:	Yes		Ν	lo			
Visual Inspection of vegetation? Maintenance Required? Corrective Action Needed & Notes:	Yes Yes			10 10			
Visual inspection of drawdown time? Drawdown time less than 72 hours?	Yes Yes			lo lo			

(if no, call a qualified professional for inspection)							
Pond #60P			Poo	son for In	cnaction		
Poliu #60P	Spring	, \Box		son for in ∕early□			Storm 🗆
Maintenance Required? Corrective Action Needed & Notes:	Yes		No		Alter	iviajoi c	Storm 🗀
Visual Inspection of vegetation? Maintenance Required? Corrective Action Needed & Notes:	Yes Yes		No No				
Visual inspection of drawdown time? Drawdown time less than 72 hours? (if no, call a qualified professional for ir	Yes Yes nspection)		No No				
Catch Basins & Closed Drainage			Rea	son for In	spection		
Network	Spring		F	all/Yearly	□ After	Maior	Storm □
Maintenance Required? Corrective Action Needed & Notes:	Yes		No		<u> </u>		
Photo:							
Outlet Protection			Rea	son for In	spection		
	Spring		F	all/Yearly	After	⁻ Major	Storm 🗌
Maintenance Required? Corrective Action Needed & Notes:	Yes		No				
General			Rea	son for In	spection		
	Spring			all/Yearly	<u>'</u>		Storm □
	Spring	Ш		aii/ i cariy	□ Aitei	iviajul	Storili 🗌
Maintenance Required? Corrective Action Needed & Notes:	Yes		No				

Long-Term Inspection & Maintenance Log Jennesstown Manor - Warner, NH

Date	Inspection (Yes or No)	Maintenance (Yes or No)	List BMPs Inspected and/or Provide Comments	Inspected By:

III. Control of Invasive Plants

Invasive plants are introduced, alien, or non-native plants, which have been moved by people from their native habitat to a new area. Some Exotic plants are imported for human use such as landscaping, erosion control, or food crops. They also can arrive as "hitchhikers" among shipments of other plants, seeds, packing materials, or fresh produce. Some exotic plants become invasive and cause harm by:

- becoming weedy and overgrown;
- killing established shade trees;
- obstructing pipes and drainage systems;
- forming dense beds in water;
- lowering water levels in lakes, streams, and wetlands;
- destroying natural communities;
- promoting erosion on stream banks and hillsides; and
- resisting control except by hazardous chemical.

During maintenance activities, check for the presence of invasive plants and suitably remove according to the methods provided in the table below. The following table, based on the "Control of Invasive Plants" published by the New Hampshire Department of Agriculture, describes the most common invasive plants in this region and proper methods of disposal.

Name	Description	Invasive Qualities	Control Methods
		Invasive Trees	
Norway Maple	- Large leaves - Will exude milky white sap when leaves are broken - Leaves turn color in Late October (fall foliage is yellow)	- Suppresses growth of grass, garden plants, and forest understory -Wind-borne seeds can germinate and grow in deep shade	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out plants, including the root systems. Use a forked spade or weed wrench. Cut down the tree. Grind out the stump, or clip off re-growth. Girdle¹ Frill² Cut stem/ cut stump with glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray with glyphosate ^{3*} (mid-October to early November).
Tree of Heaven	- Long compound leaves with 11-25 lance shaped leaflets - Smell like peanut butter or burnt coffee when crushed	- Tough, can grow in poor conditions - Produces large quantities of wind-borne seeds - Grows rapidly - Secretes a toxin that kills other plants - Cannot be removed by mechanical means alone	 Pull seedlings when soil is moist. Frill² (no more than 1" gap between cuts). Use Garlon 3a herbicide. Cut stem/ cut stump with Garlon 3a. Follow label directions for cut stump application. Clip off sucker sprouts or paint with Garlon 3a.* Foliar spray³* (on regrowth) Paint bottom 12" of bark with Garlon 4 Ultra (February/March). Use maximum strength specified on label for all herbicide applications.

Invasive Shrubs

Autumn Olive	- Formerly recommended for erosion control and wildlife value	- Highly invasive, diminishes the overall quality of wildlife habitat	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs (up to 4" diameter trunks). Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Bury stump Do not mow
--------------	---	---	--

Multiflora Rose	- Formerly recommended for erosion control, hedges, and wildlife habitat - Covered in white flowers in June - Very hard, curved thorns - Fringed edge to leaf stalk	- Huge shrub that chokes out all other vegetation - Too dense for most birds to nest in - Grows up trees like a vine in Shade	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems (at least 6" from the crown and 6" down). Use a forked spade or weed wrench for trees or shrubs. Controlled burning⁴ (on extensive infestations) Cut stem/ cut stump with glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray^{3*} (mix Rodeo with extra sticker-spreader, or use Roundup Sure Shot Foam on small plants) Herbicide may be applied in winter when other plants are dermont.
			when other plants are dormant.

Bush Honeysuckles	- Includes Belle, Amur, Morrow's, and Tatarian Honeysuckle	- Creates dense shade reducing plant diversity and eliminating nest sites in forest interior spaces	 Deadhead to prevent spread of seeds (on ornamentals). Cut off seeds or fruits before they ripen. Bag and burn, or send to a landfill. Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Mow or cutting at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year (on shady sites only, brush cut in early spring and fall). Controlled burning⁴ (during growing season) Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with Glyphosate (late in the growing season). Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.*
----------------------	--	---	--

Invasive Shrubs (continued)					
Blunt-Leaved Privet	- Medium sized shrub - Simple, oblong, dark green leaves 1-2" in length - Fragrant white flowers (spring) - Blackish-purple fruit (late summer)	- Toxic to mammals - Loss of valuable habitat	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Trim off all flowers Do not cut back or mow 		

Burning Bush, Winged Euonymus	- Wide, corky wings on the Branches - Brilliant red autumn leaves - Fruit	- High seed production	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Trim off all flowers
Japanese Barberry	- Spiny deciduous shrub - Small leaves	- Very dense, displaces native plants - Can change chemistry of soil	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Trim off all flowers

Invasive Woody Vines					
Japanese Honeysuckle	- Gold and White flowers - Heavy scent and sweet nectar in June	- Shade shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle - Rampant grower - Spirals around trees, often strangling them	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Mow or cutting at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* 		

			- Foliar spray ^{3*} (fall or early spring when native vegetation is dormant) Plan to re-treat repeatedly
Oriental Bittersweet	- Bright orange seed capsules in clusters all along the stem - Flowers	- Shade shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Keep ornamental plants cut back, remove all fruits as soon as they open, and bag or burn fruits. Cut stem/ cut stump with Garlon 3a. Follow label directions for cut stump application. Clip off sucker sprouts or paint with Garlon 3a.*
Japanese Knotweed, Mexican Bamboo	- The stems have knotty joints, similar to bamboo - Grows 6-10' tall - Large, pointed oval or triangular leaves	- Shade shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle - Can grow in shade	- Cut stem/ cut stump with Glyphosate (at least 3 times each during growing season). Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* - Foliar spray ^{3*} - Treat with Rodeo - In gardens, heavy mulch or dense shade may kill it.

Invasive Herbaceous Plants

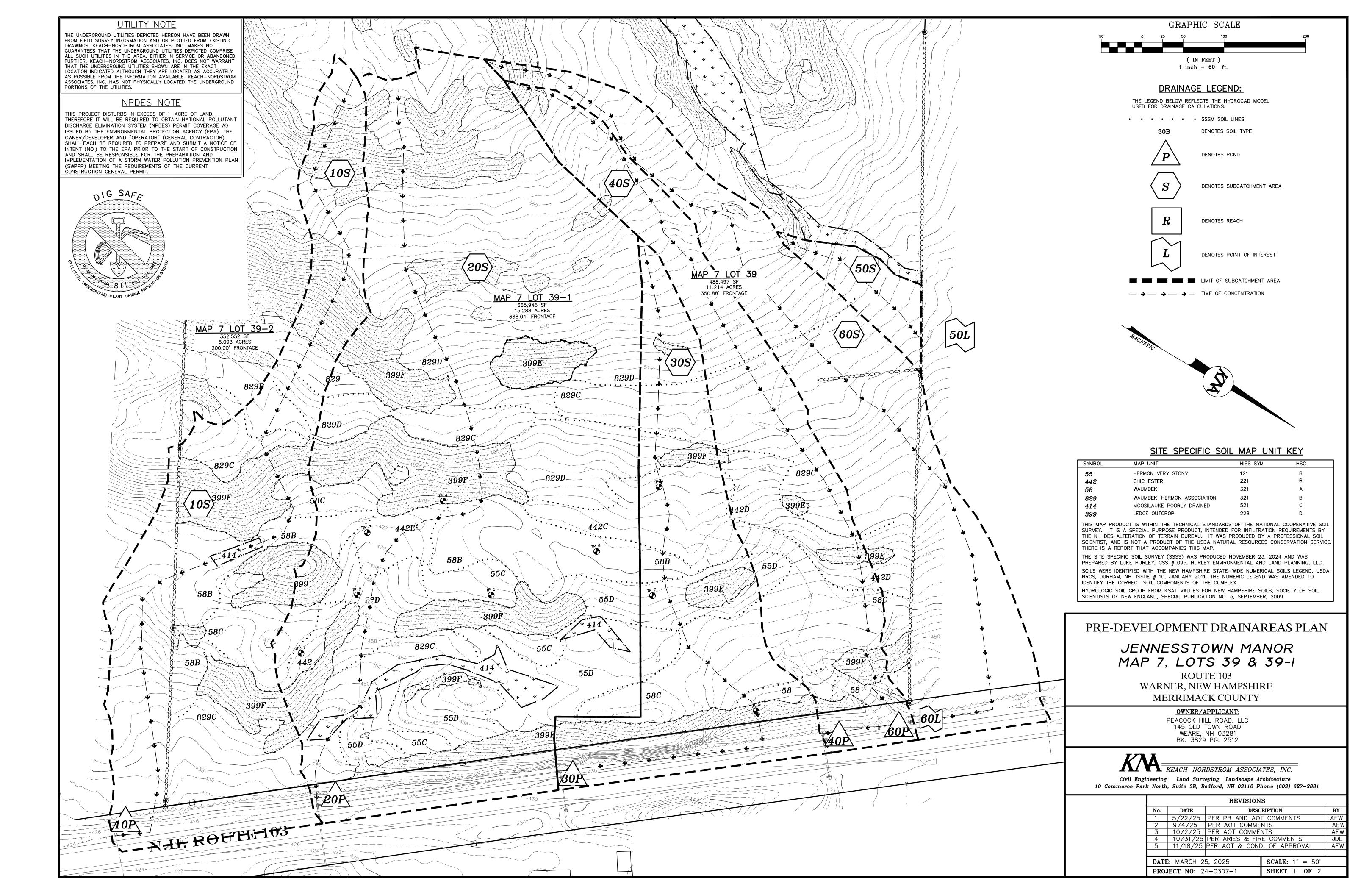
Garlic Mustard	- White-flowered biennial - Rough scalloped leaves (kidney, heart, or arrow shaped) - Garlic smell, mustard taste when its leaves are crushed	- Shade shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle - Rampant grower - Spirals around trees, often strangling them	 Pull seedlings and small or shallow-rooted plants when soil is moist (before it flowers in spring). Dig out larger plants, including the crown and root systems. Use a forked spade or weed wrench for trees or shrubs. Tamp down soil afterwards. Deadhead to prevent spread of seeds. Cut off seeds or fruits before they ripen. Bag and burn or send to a landfill. Foliar spray^{3*} (may be appropriate in some settings)
Japanese Stilt Grass	- Lime green color - Line of silvery hairs down the middle of the 2-3" long blade	- Tolerates sun or dense shade -Quickly invades areas left bare or disturbed by tilling or flooding - Builds a large seed bank in the soil	 Pull seedlings and small or shallow-rooted plants when soil is moist (pulled easily in early to midsummer). Dig out larger plants, including root systems. Use a forked spade or weed wrench for trees or shrubs. Be sure to pull before it goes to seed. If seeds have formed, bag and burn or send to a landfill. Mow or cutting at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year. Mowing weekly or when it has just begun to flower may prevent it from setting seed. Foliar spray³* (use glyphosate or herbicidal soap on large infestations. Use a corn-based pre-emergence herbicide on annual weeds (spring). This product is also an organic fertilizer, i.e., it can stimulate growth of existing plants, including weeds, so it is appropriate for lawns and gardens but may not be appropriate in woodlands.

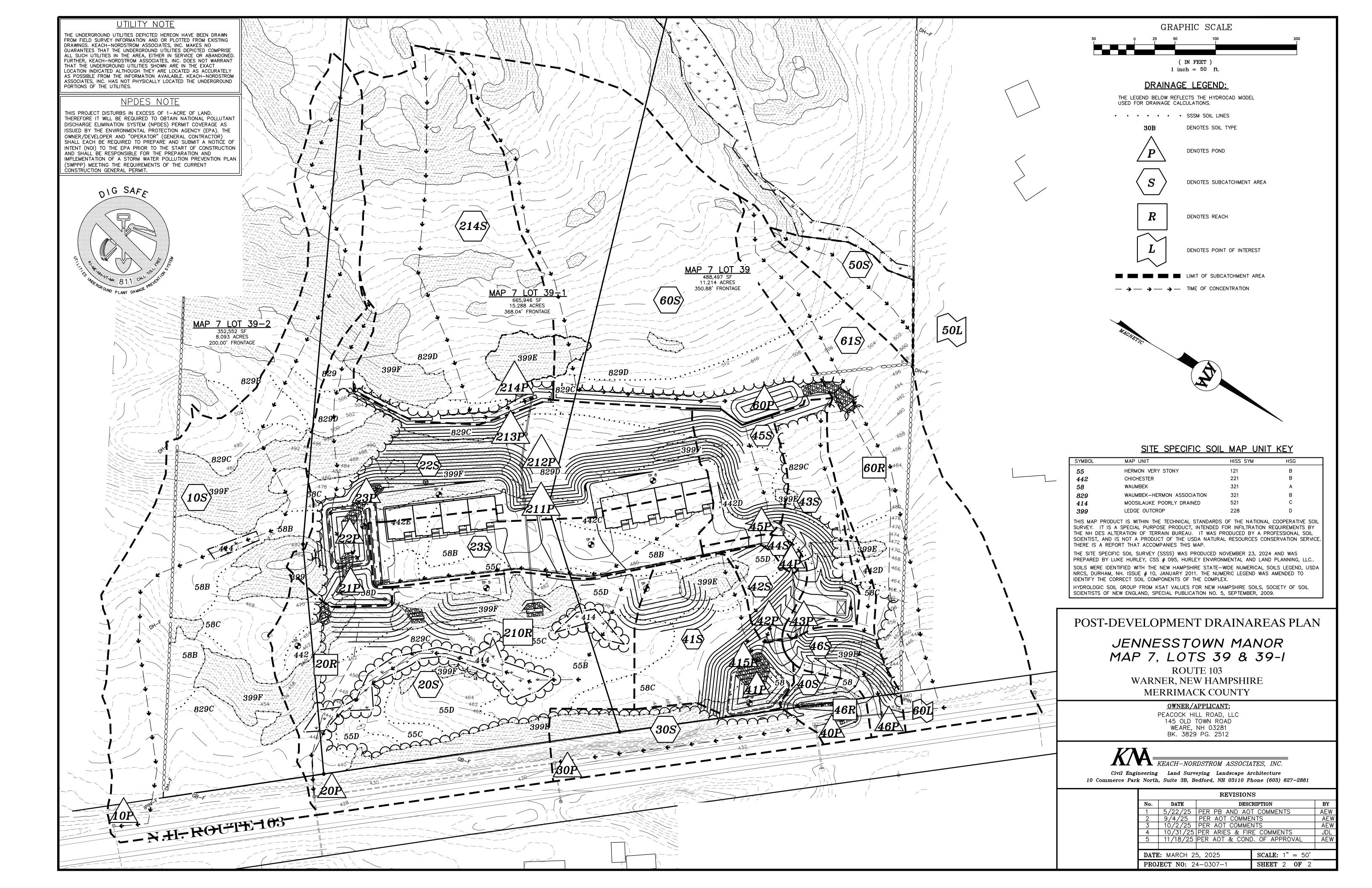
Mile-A-Minute Vine, Devil's Tail Tearthumb	- Triangular leaves - Barbed stems - Turquoise berries	- Rapid growth - Quickly covers and shades out herbaceous plants	 Pull seedlings and small or shallow-rooted plants when soil is moist (pulled easily in early to midsummer). Dig out larger plants, including root systems. Use a forked spade or weed wrench for trees or shrubs. Be sure to pull before it goes to seed. If seeds have formed, bag and burn or send to a landfill. Mow or cutting at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year. Mowing weekly or when it has just begun to flower may prevent it from setting seed. Foliar spray^{3*} (use glyphosate or herbicidal soap on large infestations. Use a corn-based pre-emergence herbicide on annual weeds (spring). This product is also an organic fertilizer, i.e., it can stimulate growth of existing plants, including weeds, so it is appropriate for lawns and gardens but may not be appropriate in woodlands.
Spotted Knapweed	- Thistle-like flowers	- Dense, crowds out native species	 Do not pull unless the plant is young and the ground is very soft. The root will break and produce several new plants. Wear sturdy gloves Deadhead to prevent spread of seeds. Cut off seeds or fruits before they ripen. Bag and burn, or send to a landfill. In lawns, spot treat with broad-leaf weed killer. Good lawn care practices (test soil; use lime and fertilizer only when soil test shows a need; mow high and frequently; leave clippings on lawn) reduce weed infestations. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray^{3*}

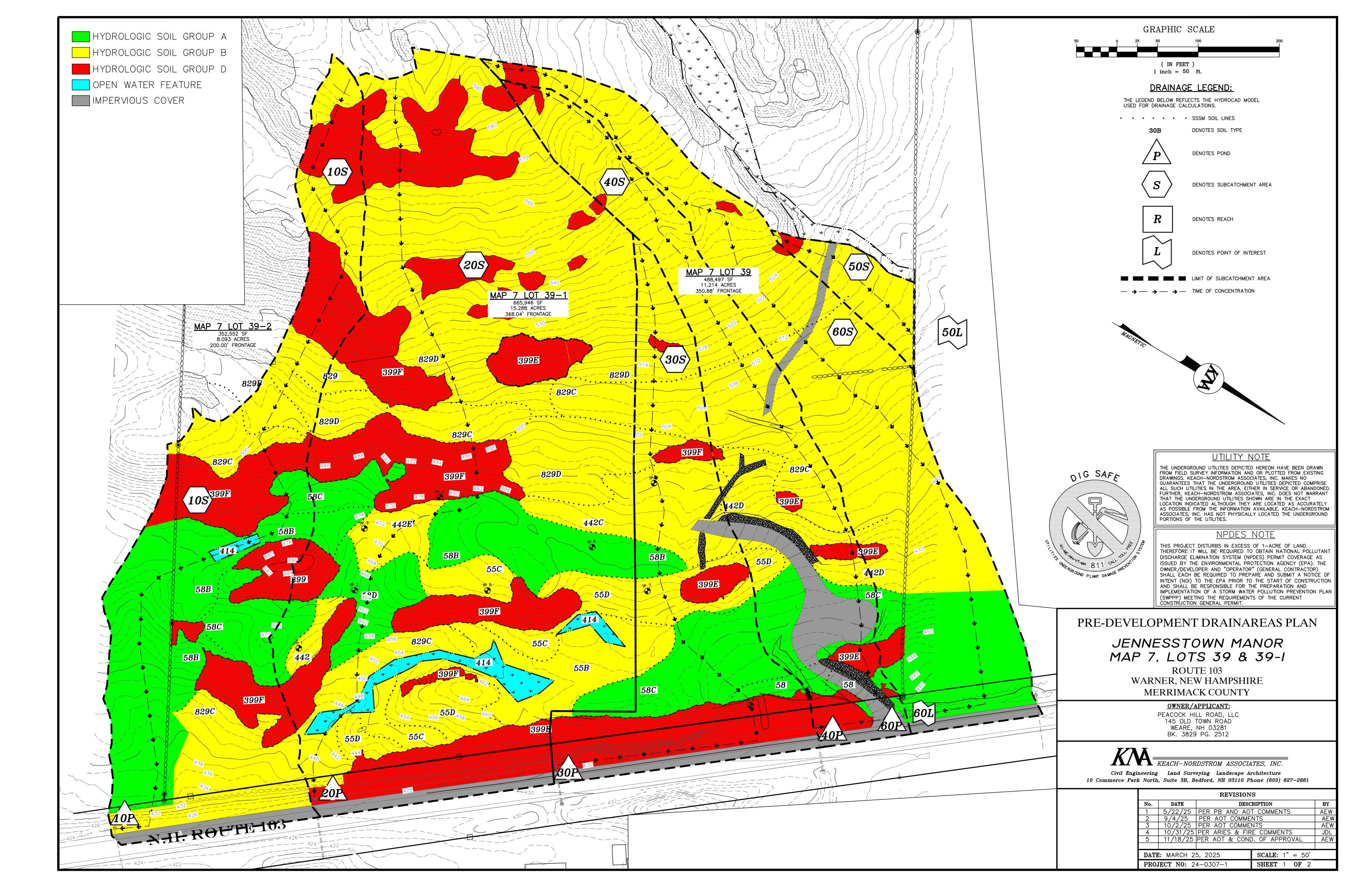
<u>'Girdle:</u> Cut through the bark and growing layer all around the trunk, about 6" above the ground. Girdling is most effective in spring (when the sap is rising) & middle-late summer (when the tree is sending food to the roots). Clip off sucker sprouts.

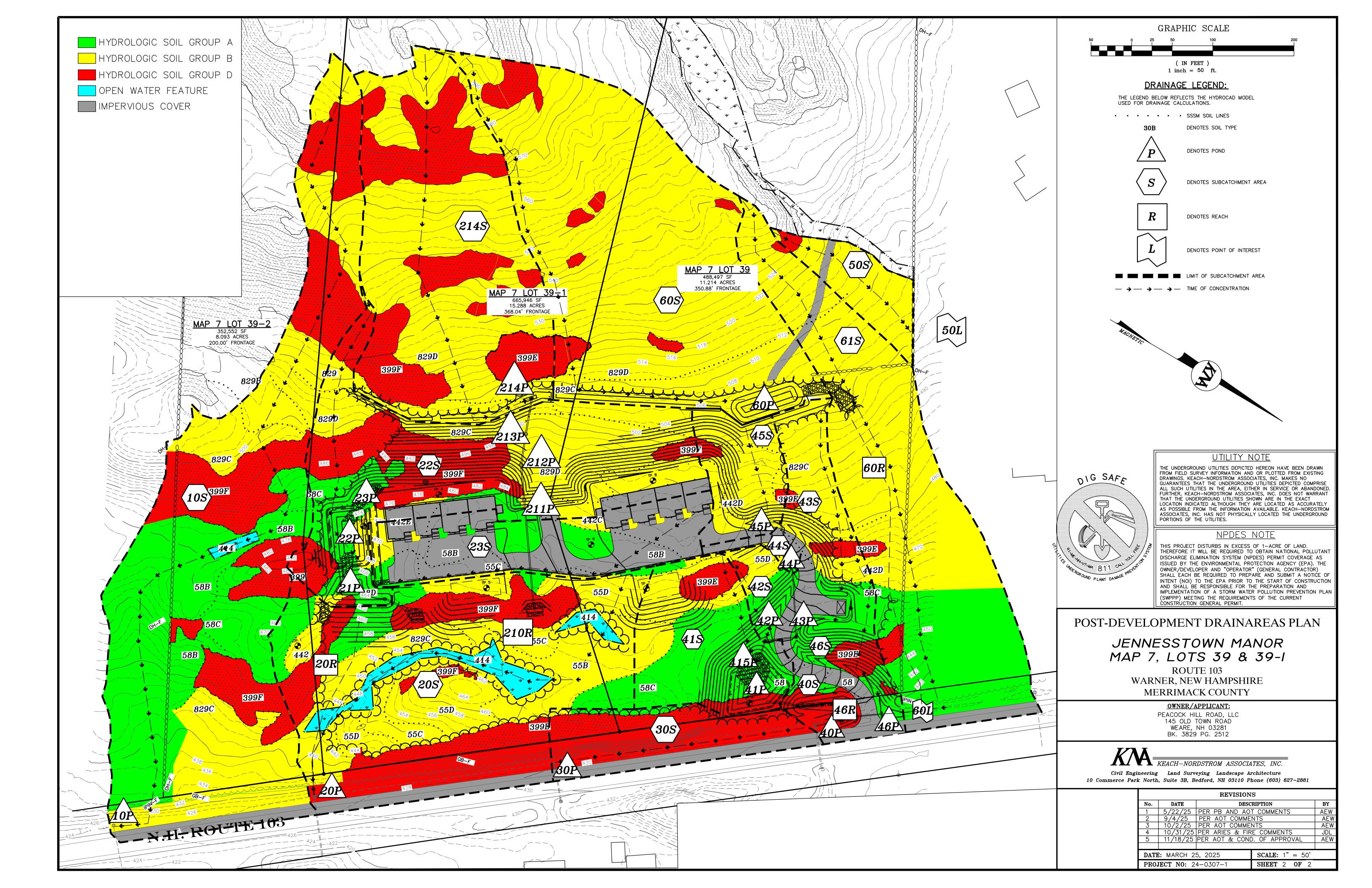
²Frill: Using a machete, hatchet, or similar device, hack scars (several holes in larger trees) downward into the growing layer, and squirt in glyphosate (or triclopyr if specified in table). Follow label directions for injection and frill applications. This is most effective from middle to late summer. Clip off any sucker sprouts or treat with glyphosate.

<u>*Foliar Spray:</u> Use a backpack or garden sprayer or mist blower, following label directions. Avoid overspray and/or dripping onto non-target plants, because glyphosate kills most plants except moss. If it rolls off waxy or grass-like foliage, use additional sticker-spreader. Deciduous trees, shrubs, and perennials move nutrients down to the roots in late summer. Glyphosate is particularly effective at this time and when plants have just gone out of flowering. Several invasive species retain their foliage after native plants have lost theirs, and resume growth earlier in spring than most natives. This allows you to treat them without harming the natives. However, the plant must be actively growing for the herbicide to work. Retreatments may be necessary the following year if suckering occurs or the plant hasn't been entirely killed.


4Controlled Burning: Burning during the spring (repeated over several years) will allow native vegetation to compete more effectively with the invasive species. This requires a permit. Spot treatment with glyphosate in late fall can be used to make this method more effective


<u>*Herbicides:</u> It is highly recommended that small populations try to be controlled using non-chemical methods where feasible. However, for large infestations, and for a few plants herbicide use is essential. Apply herbicides carefully to avoid non-target plants, glyphosate is the least environmentally damaging herbicide in most cases. Add food coloring for visibility, and a soap-based sticker such as Cide-Kick. Glyphosate is ineffective on some plants; for these, triclopyr or Garlon 3a may be indicated. When using herbicides read the entire label and observe all precautions listed, including proper disposal. If in doubt, call your local Cooperative Extension Service.


IV. Stormwater Practice Location Plan


24. PLANS

PRE-DEVELOPMENT DRAIN AREAS PLAN (11"x17" - COLORLESS)
POST-DEVELOPMENT DRAIN AREAS PLAN (11"x17" - COLORLESS)
PRE-DEVELOPMENT SOILS MAP (11"x17" - COLOR)
POST-DEVELOPMENT SOILS MAP (11"x17" - COLOR)
PRE-DEVELOPMENT DRAIN AREAS PLAN (22"x34" - COLORLESS)
POST-DEVELOPMENT DRAIN AREAS PLAN (22"x34" - COLORLESS)
NON-RESIDENTIAL SITE PLAN SET (22" x 34" - COLORLESS)

